RBI Quantum Hackathon Workbench - this time on Learning Parity with Noise from Machine Learning Viewpoint

Tomas Rosa* and Jiri Pavlu, CBCC of RBI in Prague

Bratislava, October, 2019

*) corresponding author

Revision History

- 06/10/2019/Tom LPN introduction, Nature-style experiment elaboration
- 07/10/2019/Tom Generalised ancilla initialisation leading to a better algorithm
- 08/10/2019/Tom Improved readability by detailing key formulas derivations
- 17/10/2019/Tom Epsilon ancilla qubit incorporated

Notation Notes

- \oplus denotes (vector) addition modulo 2 •
- \odot denotes (vector) multiplication modulo 2 •
 - for binary vectors, \odot is a standard dot product modulo 2
 - when clear from the context, we use simply + and \oplus , or \cdot and \odot interchangeably

Symmetrisation Intermezzo

- vector
- This output is in general either 0 or 1
- When designing quantum algorithms, we need to incorporate f(x) into superposition coefficients in a concise way to see the effect of quantum operators
- incorporate the effect of f(x) through a power of (-1)

• We will often work with output of boolean functions like f(x), where x is a binary

• For this, it is useful to transform f(x) so to make its result either -1 or 1, or to

Symmetrisation We Use

Let $f(x) \in \{0, 1\}$. Then: $2f(x) - 1 \in \{-1, 1\}, -1 \text{ iff } f(x) = 0$ $(-1)^{f(x)} \in \{-1,1\}, -1 \text{ iff } f(x) = 1$ In particular: $(-1)^{f(x)} = 1 - 2f(x)$ $1+(-1)^{f(x)} = 2(1-f(x))$ $1-(-1)^{f(x)} = 2f(x)$

Also note the Hadamard transform of such a boolean f(x)

 $|f(x)\rangle \mapsto \frac{(-1)^{0 \cdot f(x)} |0\rangle + (-1)^{1 \cdot f(x)} |1\rangle}{\sqrt{1-1}}$

 $\frac{|0\rangle + (-1)^{f(x)}|1\rangle}{|1\rangle}$

Learning Parity with Noise

The *search* version of the learning parity with noise problem with parameters $\ell \in \mathbb{N}$ (the length of the secret), $\tau \in \mathbb{R}$ where $0 < \tau < 0.5$ (the noise rate) and $q \in \mathbb{N}$ (the numbers of samples) asks to find a fixed random ℓ bit secret $\mathbf{s} \in \mathbb{Z}_2^{\ell}$ from q samples of the form $\mathbf{a}, \langle \mathbf{a}, \mathbf{s} \rangle \oplus e$ where $\mathbf{a} \in \mathbb{Z}_2^{\ell}$ is random and $e \in \mathbb{Z}_2$ has Bernoulli distribution with parameter τ (we denote this distribution with Ber_{τ}), i.e. $\Pr[e = 1] = \tau$. The *decisional* LPN problem is defined similarly, except that we require that one cannot even distinguish noisy inner products from random.

[Krzysztof Pietrzak, 2012]

Broad Impact of LPN

- since it has considerable impact on both
 - machine learning techniques
 - post-quantum cryptography and cryptanalysis

We have chosen the Learning Parity with Noise problem for this hackathon,

Starting Experiment Described in Nature Partner Journal on QI (4/17)

ARTICLE OPEN Demonstration of quantum advantage in machine learning

Diego Ristè¹, Marcus P. da Silva¹, Colm A. Ryan¹, Andrew W. Cross², Antonio D. Córcoles², John A. Smolin², Jay M. Gambetta², Jerry M. Chow² and Blake R. Johnson¹

Our Starting Position

- final Hadamard gates are on
 - the same QPU (Quantum Processing Unit) core setup
- In the original, the LPN noise is intrinsic, generated by QPU inherently
 - factor
 - it is generated independently for each oracle-operator invocation

• We consider the quantum approach to LPN solving, so we always assume the

- omitting output Hadamard(s) was to simulate classical LPN conditions with

- we stick more with classical LPN, so we explicitly use the additive error

Our Goals

- - it follows from a generalisation of the ancilla qubit initialisation
 - actually, it is a bit surprising the former authors did not note this connection already
- Discuss the quantum advantage
 - we should be able to solve even the worst-case LPN instances that are unsolvable classically
 - i.e. for $\tau = 1/2$

Improve the efficiency of the original algorithm by showing its direct connection with Bernstein-Vazirani algorithm we elaborated in Vienna in May this year (so btw., there is an ongoing competence extension and application)

Verify the theoretical construction practically, even with a higher number of data qubits (originally, they used two)

- we want to show this approach practically halves the number of LPN oracle invocations (respectively the number of QPU runs); as we are talking about practical machine learning algorithms, this can be significant

We investigate the original ("Nature-style") initialisation and approach

 $\left|\psi_{1}\right\rangle = \frac{1}{\sqrt{2^{n}}} \sum_{x \in F_{n}} |x\rangle \otimes |0\rangle$

note we have dropped the bar vector notation used before

We apply the LPN oracle operator for $f_k(x)$ k is the hidden number, ε is the binary error factor (the noise)

 $|x\rangle \otimes |0\rangle \mapsto |x\rangle \otimes |f_i(x) \oplus 0\rangle$, where $f_k(x) = k \odot x \oplus \varepsilon$ $\left| \psi_{2,k} \right\rangle = \frac{1}{\sqrt{2^{n}}} \sum_{x \in F_{2}^{n}} \left| x \right\rangle \otimes \left(\frac{1 + (-1)^{f_{k}(x)}}{2} \left| 0 \right\rangle + \frac{1 - (-1)^{f_{k}(x)}}{2} \left| 1 \right\rangle \right)$

phase kickback effect **not obvious**, now

Then we apply the final Hadamard transform(s) (cf. original scheme)

$$\Psi_{3,k} = \frac{1}{2^{n}} \sum_{y \in F_{2}^{n}} \sum_{x \in F_{2}^{n}} (-1)^{x \odot y} |y\rangle \otimes \left[\frac{1 + (-1)^{f_{k}(x)}}{2\sqrt{2}} \left(|0\rangle + |1\rangle \right) + \frac{1 - (-1)^{f_{k}(x)}}{2\sqrt{2}} \left(|0\rangle - |1\rangle \right) \right]$$

$$= \frac{1}{2^n} \sum_{y \in F_2^n} \sum_{x \in F_2^n} (-1)^{x \odot y} |y\rangle \otimes \left(\frac{|0\rangle + (-1)^{f_k(x)}|1\rangle}{\sqrt{2}}\right), \text{ for } f_k(x) = k \odot x \oplus \varepsilon$$

 $= \frac{1}{2^{n}\sqrt{2}} \sum_{y \in F_{2}^{n}} \sum_{x \in F_{2}^{n}} (-1)^{x \odot y} |y\rangle |0\rangle + \frac{1}{2^{n}\sqrt{2}} \sum_{y \in F_{2}^{n}} \sum_{x \in$

 $=\frac{1}{\sqrt{2}}|00...0\rangle|0\rangle+\frac{(-1)^{\varepsilon}}{\sqrt{2}}|k\rangle|1\rangle$

garbage

direct secret bits

$$\sum_{F_2^n} (-1)^{\varepsilon} (-1)^{x \odot (y \oplus k)} |y\rangle |1\rangle$$

Notes on the Original Approach

- We have 50% chance to measure |0> and |1> on the ancilla qubit, respectively
 - measuring |0> brings no further information in data qubits
 - measuring $|1\rangle$ reveals the hidden number (secret) k in data qubits
- In case of the positive answer, the result is totally insensitive on the ϵ noise
 - this is certainly a good point (though not so much addressed before)
- We, however, waste around 50% of QPU runs
 - we shall try to do this better, now

In Search for the Generalised Ancilla Initialisation (GAI)

- Note that the original "Nature-style" approach works practically the same way, regardless whether the ancilla is initialised as |0> or |1>
 - this suggests that both of the pure eigenstates are equally good or bad
 - how about to try their superposition?
 - heuristically, we try an equal superposition with a variable relative phase

The Generalised Ancilla Initialisation (GAI)

 $|\psi_1\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in F_2^n} |x\rangle \otimes \left(\frac{|0\rangle + e^{i\varphi}|1\rangle}{\sqrt{2}}\right)$

Again, we apply the LPN oracle operator for $f_k(x)$

$\left| \boldsymbol{\psi}_{2,k} \right\rangle = \frac{1}{\sqrt{2^{n}}} \sum_{x \in E^{n}} \left| x \right\rangle \otimes \left(\frac{\left| f_{k}(x) \right\rangle + e^{i\varphi} \left| f_{k}(x) \oplus 1 \right\rangle}{\sqrt{2}} \right)$

phase kickback can be shown for e.g. $\varphi = \pi$

Now, we use the final Hadamard transform(s) to see how it works

$$|\Psi_{3,k}\rangle = \frac{1}{2^{n}} \sum_{y \in F_{2}^{n}} \sum_{x \in F_{2}^{n}} (-1)^{x \odot y} |y\rangle \otimes \left(\frac{|0\rangle + (-1)^{f_{k}(x)}|1\rangle}{2} + e^{i\varphi} \frac{|0\rangle + (-1)^{f_{k}(x)\oplus 1}|1\rangle}{2}\right)$$

$$=\frac{1}{2^{n}}\sum_{y\in F_{2}^{n}}\sum_{x\in F_{2}^{n}}(-1)^{x\odot y}|y\rangle\otimes\left(\frac{(1+e^{i\varphi})}{2}|0\rangle+\frac{(1-e^{i\varphi})(-1)^{f_{k}(x)}}{2}|1\rangle\right), \text{ note } (-1)^{f_{k}(x)\oplus 1}=-(-1)^{f_{k}(x)}$$

$$=\frac{1+e^{i\varphi}}{2^{n+1}}\sum_{y\in F_2^n}\sum_{x\in F_2^n}(-1)^{x\odot y}|y\rangle|0\rangle+\frac{1-e^{i\varphi}}{2^{n+1}}\sum_{y\in F_2^n}\sum_{x\in F_2^n}(-1)^{\varepsilon}(-1)^{x\odot (y\oplus k)}|y\rangle|1\rangle, \text{ note } f_k(x)=k\odot x\oplus\varepsilon$$

$$=\frac{1+e^{i\varphi}}{2}|00...0\rangle|0\rangle+\frac{(-1)^{\varepsilon}(1-e^{i\varphi})}{2}|k\rangle|1\rangle$$
garbage direct s

secret bits

Minimising the Garbage Probability

- observation
 - of our LPN quantum solver
- The garbage probability is equal to zero if

 $1 + e^{i\varphi} = 0 \Leftrightarrow \varphi = (2b + 1)\pi, b \in \mathbb{Z}$

• Using GAI, we can manipulate the probability of the garbage $|00...0\rangle|0\rangle$ state

- this way, we can minimise the waste of QPU runs, so to increase effectiveness

Welcome back, please, Mr. Bernstein and Mr. Vazirani

- With $\varphi = \pi$, we get exactly the Bernstein-Vazirani algorithm (BVA) again
 - as reformulated by Cleve et al. in "Quantum Algorithms Revisited", 1997
 - apparently, this algorithm is quite powerful for both machine learning and cryptology
 - we have shown that BVA is a general extension of the Nature-style approach and the most efficient way to solve the LPN studied here

Experimental Implementation of the ε -error

- QPU run
 - hard to do with the actual Qiskit platform
- We decided to do an equivalent implementation based on an extra error-driving qubit
 - the error is still interpreted classically, but it is inserted in a quantum way
 - adding the $|q_{\varepsilon}\rangle$ ancilla qubit tweaks the state after the "error-free" LPN operator using a CNOT entanglement to a superposition of error-free and erroneous substates
 - probability distribution
 - —

To fully implement the LPN oracle, we would need to be able to alter its quantum operator for each and every

- our LPN solver solves both instances in parallel; finally revealing only one, depending on the error

by measuring the epsilon ancilla, we can get a kind of "debug" information for further statistical processing

Epsilon Ancilla Qubit Before Entangling with the LPN Output (General Distribution)

 $\left|\psi_{2,k}\right\rangle = \frac{1}{\sqrt{2^{n}}} \sum_{x \in F_{2}^{n}} \left|x\right\rangle \otimes \left(\frac{\left|f_{k}(x)\right\rangle + e^{i\varphi}\right|f_{k}(x) \oplus 1}{\sqrt{2}}\right) \otimes \left(\cos\frac{\theta}{2}\left|0_{\varepsilon}\right\rangle + \sin\frac{\theta}{2}e^{i\beta}\left|1_{\varepsilon}\right\rangle\right)$

epsilon ancilla added; state is tweaked via tensor product

— here, the f_k is just the inner product, without the epsilon error

CNOT Entangling the Epsilon Error with the LPN Output (General Error Distribution)

$$\begin{split} \left| \boldsymbol{\psi}^{(\varepsilon)}_{2,k} \right\rangle &= \frac{\cos \frac{\theta}{2}}{\sqrt{2^{n}}} \sum_{x \in F_{2}^{n}} \left| x \right\rangle \otimes \left(\frac{\left| f_{k,\varepsilon=0}(x) \right\rangle + e^{i\theta} \right| f_{k,\varepsilon=0}(x) \oplus 1}{\sqrt{2}} \right) \otimes \left| \boldsymbol{0}_{\varepsilon} \right\rangle \\ &- \text{ error-free bran} \\ &+ \frac{\sin \frac{\theta}{2} e^{i\theta}}{\sqrt{2^{n}}} \sum_{x \in F_{2}^{n}} \left| x \right\rangle \otimes \left(\frac{\left| f_{k,\varepsilon=1}(x) \right\rangle + e^{i\theta} \right| f_{k,\varepsilon=1}(x) \oplus 1}{\sqrt{2}} \right) \otimes \left| \boldsymbol{1}_{\varepsilon} \right\rangle \\ &- \text{ erroneous bran} \end{split}$$

— here, the $f_{k,\varepsilon}$ is the inner product with the explicit epsilon error

What Follows

- Standard finalisation via $|\Psi_3\rangle$
 - both error-free and erroneous branches are solved in parallel
 - the measurement finally reveals either the branch for $\varepsilon = 0$ or $\varepsilon = 1$, respectively
 - by observing the epsilon ancilla qubit, we can get further statistical discrimination to verify our solver works for both situations equally well