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Revision History

- 06/10/2019/Tom - LPN introduction, Nature-style experiment elaboration
- 07/10/2019/Tom - Generalised ancilla initialisation leading to a better algorithm
- 08/10/2019/Tom - Improved readability by detailing key formulas derivations

- 17/10/2019/Tom - Epsilon ancilla qubit incorporated



Notation Notes

- @ denotes (vector) addition modulo 2
- (O denotes (vector) multiplication modulo 2
- for binary vectors, © Is a standard dot product modulo 2

- when clear from the context, we use simply + and @, or - and
Interchangeably



Symmetrisation Intermezzo

+ We will often work with output of boolean functions like f(x), where x is a binary
VECTOor

+T'his output Is In general either O or 1

- When designing quantum algorithms, we need to incorporate f(x) into

superposition coefficients In a concise way to see the effect of quantum
operators

- For this, it is useful to transform f(x) so to make its result either -1 or 1, or to
iIncorporate the effect of f(x) through a power of (-1)



Symmetrisation We Use

Let f(x) €10,1}.
Then:
2f(x)-le{-1L1}, —1iff f(x)=0
(-1’ e{-L1}, —1iff f(x)=1
In particular:
(1) =1-2f(x)
[+(=D)"" =201~ f(x))
- (=1)"" =2 f(x)
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Learning Parity with Noise

The search version of the learning parity with noise problem with parameters
¢ € N (the length of the secret), 7 € R where 0 < 7 < 0.5 (the noise rate) and

¢ € N (the numbers of samples) asks to find a fixed random ¢ bit secret s € Z5

from ¢ samples of the form a, (a,s) @ e where a € Z5 is random and e € Zy has

i.e. Prle = 1| = 7. The decisional LPN problem is defined similarly, except that
we require that one cannot even distinguish noisy inner products from random.

[Krzysztof Pietrzak, 2012]



Broad Impact of LPN

- We have chosen the Learning Parity with Noise problem for this hackathon,
since It has considerable impact on both

- machine learning techniques

- post-quantum cryptography and cryptanalysis



Starting Experiment Described in Nature Partner Journal on QI (4/17)
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Our Starting Position

+ We consider the gquantum approach to LPN solving, so we always assume the
final Hadamard gates are on

- omitting output Hadamard(s) was to simulate classical LPN conditions with
the same QPU (Quantum Processing Unit) core setup

In the original, the LPN noise is intrinsic, generated by QPU inherently

- we stick more with classical LPN, so we explicitly use the additive error
factor

- It IS generated independently for each oracle-operator invocation



Our Goals

Improve the efficiency of the original algorithm by showing its direct connection with Bernstein-Vazirani algorithm
we elaborated in Vienna in May this year (so btw., there is an ongoing competence extension and application)

- It follows from a generalisation of the ancilla qubit initialisation
- actually, it Is a bit surprising the former authors did not note this connection already
- Verify the theoretical construction practically, even with a higher number of data qubits (originally, they used two)

- we want to show this approach practically halves the number of LPN oracle invocations (respectively the
number of QPU runs); as we are talking about practical machine learning algorithms, this can be significant

Discuss the quantum advantage

- we should be able to solve even the worst-case LPN instances that are unsolvable classically

- le.fort=1/2



We investigate the original (“Nature-style”) initialisation and approach
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We apply the LPN oracle operator for fx(x)
K 1S the hidden number, € is the binary error factor (the noise)
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Then we apply the final Hadamard transform(s) (cf. original scheme)
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Notes on the Original Approach

- We have 50% chance to measure |0> and |1> on the ancilla qubit, respectively
- measuring |0> brings no further information in data qubits
- measuring |1> reveals the hidden number (secret) k in data qubits
INn case of the positive answer, the result is totally insensitive on the € noise
- this is certainly a good point (though not so much addressed before)
- We, however, waste around 50% of QPU runs

- we shall try to do this better, now



In Search for the Generalised Ancilla Initialisation (GAI)

Note that the original “Nature-style™ approach works practically the same way,
regardless whether the ancilla is initialised as |0> or |1>

- this suggests that both of the pure eigenstates are equally good or bad
- how about to try their superposition”?

- heuristically, we try an equal superposition with a variable relative phase



The Generalised Ancilla Initialisation (GAI)




Again, we apply the LPN oracle operator for f«(x)
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Now, we use the final Hadamard transform(s) to see how it works
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Minimising the Garbbage Probability

- Using GAI, we can manipulate the probabilty of the garbage [00...0>|0> state
observation

- this way, we can minimise the waste of QPU runs, so to increase effectiveness
of our LPN quantum solver

+ The garbage probability Is equal to zero If

1+’ =0 0=2b+ 1, be”Z



Welcome back, please, Mr. Bernstein and Mr. Vazirani

- With @ = &, we get exactly the Bernstein-Vazirani algorithm (BVA) again

- as reformulated by Cleve et al. in "Quantum Algorithms Revisited”, 1997

- apparently, this algorithm is quite powerful for both machine learning and
cryptology

- we have shown that BVA is a general extension of the Nature-style
approach and the most efficient way to solve the LPN studied here



Experimental Implementation of the e-error

- To fully implement the LPN oracle, we would need to be able to alter its quantum operator for each and every
QPU run

- hard to do with the actual Qiskit platform
+ We decided to do an equivalent implementation based on an extra error-driving qubit
- the error is still interpreted classically, but it is inserted in a quantum way

- adding the |ge> ancilla qubit tweaks the state after the “error-free” LPN operator using a CNOT
entanglement to a superposition of error-free and erroneous substates

- our LPN solver solves both instances in parallel; finally revealing only one, depending on the error
probabillity distribution

- by measuring the epsilon ancilla, we can get a kind of “debug” information for further statistical processing



Fpsilon Ancilla Qubit Before Entangling with the LPN Output
(General Distribution)
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epsilon ancilla added; state is tweaked via tensor product

— here, the fx Is just the inner product, without the epsilon error



CNOT Entangling the Epsilon Error with the LPN Output
(General Error Distribution)

\/ xeF

SlIl 6

iy

x>®

2 [x)€

xeF

freno)) €

froa(®1)

0,

— error-free branch

®|1, )

— erroneous branch

— here, the fk ¢ IS the Inner product with the explicit epsilon error



VWhat Follows

- Standard finalisation via |yrz>
- poth error-free and erroneous branches are solved in parallel

- the measurement finally reveals either the branch tor €=0 or =1,
respectively

- by observing the epsilon ancilla qubit, we can get further statistical
discrimination to verity our solver works for both situations equally well



