RBI Quantum Hackathon Workbench

- this time on Learning Parity with Noise from Machine Learning Viewpoint

Tomas Rosa* and Jiri Pavlu, CBCC of RBI in Prague

Revision History

- 06/10/2019/Tom - LPN introduction, Nature-style experiment elaboration
- 07/10/2019/Tom - Generalised ancilla initialisation leading to a better algorithm
- 08/10/2019/Tom - Improved readability by detailing key formulas derivations
- 17/10/2019/Tom - Epsilon ancilla qubit incorporated

Notation Notes

- \oplus denotes (vector) addition modulo 2
- \odot denotes (vector) multiplication modulo 2
- for binary vectors, \odot is a standard dot product modulo 2
- when clear from the context, we use simply + and \oplus, or \cdot and \odot interchangeably

Symmetrisation Intermezzo

- We will often work with output of boolean functions like $f(x)$, where x is a binary vector
- This output is in general either 0 or 1
- When designing quantum algorithms, we need to incorporate $f(x)$ into superposition coefficients in a concise way to see the effect of quantum operators
- For this, it is useful to transform $f(x)$ so to make its result either -1 or 1 , or to incorporate the effect of $f(x)$ through a power of (-1)

Symmetrisation We Use

Let $f(x) \in\{0,1\}$.
Then:

$$
\begin{aligned}
& 2 f(x)-1 \in\{-1,1\},-1 \text { iff } f(x)=0 \\
& (-1)^{f(x)} \in\{-1,1\},-1 \text { iff } f(x)=1
\end{aligned}
$$

In particular:

$$
\begin{aligned}
(-1)^{f(x)} & =1-2 f(x) \\
1+(-1)^{f(x)} & =2(1-f(x)) \\
1-(-1)^{f(x)} & =2 f(x)
\end{aligned}
$$

Also note the Hadamard transform of such a boolean $f(x)$

$$
\begin{aligned}
& |f(x)\rangle \mapsto \frac{(-1)^{0 . f(x)}|0\rangle+(-1)^{1 \cdot f(x)}|1\rangle}{\sqrt{2}} \\
& =\frac{|0\rangle+(-1)^{f(x)}|1\rangle}{\sqrt{2}}
\end{aligned}
$$

Learning Parity with Noise

The search version of the learning parity with noise problem with parameters $\ell \in \mathbb{N}$ (the length of the secret), $\tau \in \mathbb{R}$ where $0<\tau<0.5$ (the noise rate) and $q \in \mathbb{N}$ (the numbers of samples) asks to find a fixed random ℓ bit secret $\mathbf{s} \in \mathbb{Z}_{2}^{\ell}$ from q samples of the form $\mathbf{a},\langle\mathbf{a}, \mathbf{s}\rangle \oplus e$ where $\mathbf{a} \in \mathbb{Z}_{2}^{\ell}$ is random and $e \in \mathbb{Z}_{2}$ has Bernoulli distribution with parameter τ (we denote this distribution with Ber $_{\tau}$), i.e. $\operatorname{Pr}[e=1]=\tau$. The decisional LPN problem is defined similarly, except that we require that one cannot even distinguish noisy inner products from random.

Broad Impact of LPN

- We have chosen the Learning Parity with Noise problem for this hackathon, since it has considerable impact on both
- machine learning techniques
- post-quantum cryptography and cryptanalysis

Starting Experiment Described in Nature Partner Journal on Ql (4/17)

ARTICLE OPEN

Demonstration of quantum advantage in machine learning
Diego Ristè ${ }^{1}$, Marcus P. da Silva (D) ${ }^{1}$, Colm A. Ryan ${ }^{1}$, Andrew W. Cross ${ }^{2}$, Antonio D. Córcoles ${ }^{2}$, John A. Smolin ${ }^{2}$, Jay M. Gambetta ${ }^{2}$,
Jerry M. Chow ${ }^{2}$ and Blake R. Johnson (D)

Our Starting Position

- We consider the quantum approach to LPN solving, so we always assume the final Hadamard gates are on
- omitting output Hadamard(s) was to simulate classical LPN conditions with the same QPU (Quantum Processing Unit) core setup
- In the original, the LPN noise is intrinsic, generated by QPU inherently
- we stick more with classical LPN, so we explicitly use the additive error factor
- it is generated independently for each oracle-operator invocation

Our Goals

- Improve the efficiency of the original algorithm by showing its direct connection with Bernstein-Vazirani algorithm we elaborated in Vienna in May this year (so btw., there is an ongoing competence extension and application)
- it follows from a generalisation of the ancilla qubit initialisation
- actually, it is a bit surprising the former authors did not note this connection already
- Verify the theoretical construction practically, even with a higher number of data qubits (originally, they used two)
- we want to show this approach practically halves the number of LPN oracle invocations (respectively the number of QPU runs); as we are talking about practical machine learning algorithms, this can be significant
- Discuss the quantum advantage
- we should be able to solve even the worst-case LPN instances that are unsolvable classically
- i.e. for $\boldsymbol{\tau}=1 / 2$

We investigate the original ("Nature-style") initialisation and approach

$$
\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{x \in F_{2}^{n}}|x\rangle \otimes|0\rangle
$$

We apply the LPN oracle operator for $f_{k}(x)$
k is the hidden number, ε is the binary error factor (the noise)

$$
\begin{aligned}
& |x\rangle \otimes|0\rangle \mapsto|x\rangle \otimes\left|f_{i}(x) \oplus 0\right\rangle \text {, where } f_{k}(x)=k \odot x \oplus \varepsilon \\
& \left|\psi_{2, k}\right\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{x \in F_{2}^{n}}|x\rangle \otimes\left(\frac{1+(-1)^{f_{k}(x)}}{2}|0\rangle+\frac{1-(-1)^{f_{k}(x)}}{2}|1\rangle\right)
\end{aligned}
$$

Then we apply the final Hadamard transform(s) (cf. original scheme)

$$
\begin{aligned}
& \left|\psi_{3, k}\right\rangle=\frac{1}{2^{n}} \sum_{y \in F_{2}^{n}} \sum_{x \in F_{2}^{n}}(-1)^{x \odot y}|y\rangle \otimes\left[\frac{1+(-1)^{f_{k}(x)}}{2 \sqrt{2}}(|0\rangle+|1\rangle)+\frac{1-(-1)^{f_{k}(x)}}{2 \sqrt{2}}(|0\rangle-|1\rangle)\right] \\
& =\frac{1}{2^{n}} \sum_{y \in F_{2}^{n}} \sum_{x \in F_{2}^{n}}(-1)^{x \odot y}|y\rangle \otimes\left(\frac{|0\rangle+(-1)^{f_{k}(x)}|1\rangle}{\sqrt{2}}\right) \text {, for } f_{k}(x)=k \odot x \oplus \varepsilon \\
& =\frac{1}{2^{n} \sqrt{2}} \sum_{y \in F_{2}^{n_{2}}} \sum_{x \in F_{2}^{n}}(-1)^{x \odot y}|y\rangle|0\rangle+\frac{1}{2^{n} \sqrt{2}} \sum_{y \in F_{2}^{n}} \sum_{x \in F_{2}^{n}}(-1)^{\varepsilon}(-1)^{x \odot(y \oplus \in)}|y\rangle|1\rangle \\
& =\frac{1}{\sqrt{2}} \underbrace{00 \ldots} . .0\rangle|0\rangle+\frac{(-1)^{\varepsilon}}{\sqrt{2}}|k\rangle|1\rangle \\
& \underbrace{}_{\text {direct secret bits }}
\end{aligned}
$$

Notes on the Original Approach

- We have 50% chance to measure $\mid 0>$ and $\mid 1>$ on the ancilla qubit, respectively
- measuring |0> brings no further information in data qubits
- measuring |1> reveals the hidden number (secret) k in data qubits
- In case of the positive answer, the result is totally insensitive on the ε noise
- this is certainly a good point (though not so much addressed before)
- We, however, waste around 50% of QPU runs
- we shall try to do this better, now

In Search for the Generalised Ancilla Initialisation (GAI)

- Note that the original "Nature-style" approach works practically the same way, regardless whether the ancilla is initialised as $\mid 0>$ or $\mid 1>$
- this suggests that both of the pure eigenstates are equally good or bad
- how about to try their superposition?
- heuristically, we try an equal superposition with a variable relative phase

The Generalised Ancilla Initialisation (GAI)

$$
\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{x \in F_{2}^{n^{n}}}|x\rangle \otimes\left(\frac{|0\rangle+e^{i \varphi}|1\rangle}{\sqrt{2}}\right)
$$

Again, we apply the LPN oracle operator for $f_{k}(x)$

$$
\left|\psi_{2, k}\right\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{x \in F_{2}^{n}}|x\rangle \otimes\left(\frac{\left|f_{k}(x)\right\rangle+e^{i \varphi}\left|f_{k}(x) \oplus 1\right\rangle}{\sqrt{2}}\right)
$$

phase kickback can be shown for e.g. $\boldsymbol{\varphi}=\boldsymbol{\pi}$

Now, we use the final Hadamard transform(s) to see how it works

$$
\begin{aligned}
& \left|\psi_{3, k}\right\rangle=\frac{1}{2^{n}} \sum_{y \in F_{2}^{n_{2}}} \sum_{x \in F_{2}^{n}}(-1)^{x \ominus y}|y\rangle \otimes\left(\frac{|0\rangle+(-1)^{f_{k}(x)}|1\rangle}{2}+e^{i \varphi} \frac{|0\rangle+(-1)^{f_{k}(x) \oplus \mid 1}|1\rangle}{2}\right) \\
& =\frac{1}{2^{n}} \sum_{y \in E_{2}^{n}} \sum_{x \in F_{2}^{n}}(-1)^{x \otimes y}|y\rangle \otimes\left(\frac{\left(1+e^{i \varphi}\right)}{2}|0\rangle+\frac{\left(1-e^{i \varphi}\right)(-1)^{f_{k}(x)}}{2}|1\rangle\right) \text {, note }(-1)^{f_{k}(x) \oplus 1}=-(-1)^{f_{k}(x)} \\
& =\frac{1+e^{i \varphi}}{2^{n+1}} \sum_{y \in F_{2}^{n}} \sum_{x \in F_{2}^{n}}(-1)^{x \odot y}|y\rangle|0\rangle+\frac{1-e^{i \varphi}}{2^{n+1}} \sum_{y \in F_{2}^{n}} \sum_{x \in F_{2}^{n}}(-1)^{\varepsilon}(-1)^{x \odot(y \oplus k)}|y\rangle|1\rangle \text {, note } f_{k}(x)=k \odot x \oplus \varepsilon \\
& \left.=\frac{1+e^{i \varphi}}{2}|00 \ldots\rangle\right\rangle|0\rangle+\frac{(-1)^{\varepsilon}\left(1-e^{i \varphi}\right)}{2}|k\rangle|1\rangle
\end{aligned}
$$

Minimising the Garbage Probability

- Using GAI, we can manipulate the probabilty of the garbage |00...0>|0> state observation
- this way, we can minimise the waste of QPU runs, so to increase effectiveness of our LPN quantum solver
- The garbage probability is equal to zero if

$$
1+e^{i \varphi}=0 \Leftrightarrow \varphi=(2 b+1) \pi, b \in \mathbb{Z}
$$

Welcome back, please, Mr. Bernstein and Mr. Vazirani

- With $\boldsymbol{\varphi}=\boldsymbol{\pi}$, we get exactly the Bernstein-Vazirani algorithm (BVA) again
- as reformulated by Cleve et al. in "Quantum Algorithms Revisited", 1997
- apparently, this algorithm is quite powerful for both machine learning and cryptology
- we have shown that BVA is a general extension of the Nature-style approach and the most efficient way to solve the LPN studied here

Experimental Implementation of the ε-error

- To fully implement the LPN oracle, we would need to be able to alter its quantum operator for each and every QPU run
- hard to do with the actual Qiskit platform
- We decided to do an equivalent implementation based on an extra error-driving qubit
- the error is still interpreted classically, but it is inserted in a quantum way
- adding the $\mid q_{\varepsilon}>$ ancilla qubit tweaks the state after the "error-free" LPN operator using a CNOT entanglement to a superposition of error-free and erroneous substates
- our LPN solver solves both instances in parallel; finally revealing only one, depending on the error probability distribution
- by measuring the epsilon ancilla, we can get a kind of "debug" information for further statistical processing

Epsilon Ancilla Qubit Before Entangling with the LPN Output

 (General Distribution)$$
\left|\psi_{2, k}\right\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{x \in F_{2^{n}}}|x\rangle \otimes\left(\frac{\left|f_{k}(x)\right\rangle+e^{i \varphi}\left|f_{k}(x) \oplus 1\right\rangle}{\sqrt{2}}\right) \otimes\left(\cos \frac{\theta}{2}\left|0_{\varepsilon}\right\rangle+\sin \frac{\theta}{2} e^{i \beta}\left|1_{\varepsilon}\right\rangle\right)
$$

epsilon ancilla added; state is tweaked via tensor product

- here, the f_{k} is just the inner product, without the epsilon error

CNOT Entangling the Epsilon Error with the LPN Output (General Error Distribution)

$$
\left|\psi_{2, k}^{(\varepsilon)}\right\rangle=\frac{\cos \frac{\theta}{2}}{\sqrt{2^{n}}} \sum_{x \in F_{2}^{n}}|x\rangle \otimes\left(\frac{\left|f_{k, \varepsilon=0}(x)\right\rangle+e^{i \varphi}\left|f_{k, \varepsilon=0}(x) \oplus 1\right\rangle}{\sqrt{2}}\right) \otimes\left|0_{\varepsilon}\right\rangle
$$

- error-free branch

$$
+\frac{\sin \frac{\theta}{2} e^{i \beta}}{\sqrt{2^{n}}} \sum_{x \in F_{2}^{n}}|x\rangle \otimes\left(\frac{\left|f_{k, \varepsilon=1}(x)\right\rangle+e^{i \varphi}\left|f_{k, \varepsilon=1}(x) \oplus 1\right\rangle}{\sqrt{2}}\right) \otimes\left|1_{\varepsilon}\right\rangle
$$

- here, the $f_{k, \varepsilon}$ is the inner product with the explicit epsilon error

What Follows

- Standard finalisation via $\left|\Psi_{3}\right\rangle$
- both error-free and erroneous branches are solved in parallel
- the measurement finally reveals either the branch for $\varepsilon=0$ or $\varepsilon=1$, respectively
- by observing the epsilon ancilla qubit, we can get further statistical discrimination to verify our solver works for both situations equally well

