
RBI Quantum Hackathon Workbench
- this time on Learning Parity with Noise from Machine Learning Viewpoint

Tomas Rosa* and Jiri Pavlu, CBCC of RBI in Prague

*) corresponding authorBratislava, October, 2019

Revision History

- 06/10/2019/Tom - LPN introduction, Nature-style experiment elaboration

- 07/10/2019/Tom - Generalised ancilla initialisation leading to a better algorithm

- 08/10/2019/Tom - Improved readability by detailing key formulas derivations

- 17/10/2019/Tom - Epsilon ancilla qubit incorporated

Notation Notes

• ⨁ denotes (vector) addition modulo 2

• ⨀ denotes (vector) multiplication modulo 2

- for binary vectors, ⨀ is a standard dot product modulo 2

- when clear from the context, we use simply + and ⨁, or ⋅ and ⨀
interchangeably

Symmetrisation Intermezzo

• We will often work with output of boolean functions like f(x), where x is a binary
vector

• This output is in general either 0 or 1

• When designing quantum algorithms, we need to incorporate f(x) into
superposition coefficients in a concise way to see the effect of quantum
operators

• For this, it is useful to transform f(x) so to make its result either -1 or 1, or to
incorporate the effect of f(x) through a power of (-1)

Symmetrisation We Use

Let f (x)∈ 0,1{ }.

Then:
 2 f (x)−1∈ −1,1{ }, −1 iff f (x) = 0

 (−1) f (x) ∈ −1,1{ }, −1 iff f (x) = 1

In particular:
 (−1) f (x) = 1− 2 f (x)
 1+ (−1) f (x) = 2(1− f (x))
 1− (−1) f (x) = 2 f (x)

Also note the Hadamard transform of such a boolean f(x)

f (x) !
(−1)0⋅ f (x) 0 + (−1)1⋅ f (x) 1

2

=
0 + (−1) f (x) 1

2

Learning Parity with Noise

[Krzysztof Pietrzak, 2012]

Broad Impact of LPN

• We have chosen the Learning Parity with Noise problem for this hackathon,
since it has considerable impact on both

- machine learning techniques

- post-quantum cryptography and cryptanalysis

Starting Experiment Described in Nature Partner Journal on QI (4/17)

Our Starting Position

• We consider the quantum approach to LPN solving, so we always assume the
final Hadamard gates are on

- omitting output Hadamard(s) was to simulate classical LPN conditions with
the same QPU (Quantum Processing Unit) core setup

• In the original, the LPN noise is intrinsic, generated by QPU inherently

- we stick more with classical LPN, so we explicitly use the additive error
factor

- it is generated independently for each oracle-operator invocation

Our Goals

• Improve the efficiency of the original algorithm by showing its direct connection with Bernstein-Vazirani algorithm
we elaborated in Vienna in May this year (so btw., there is an ongoing competence extension and application)

- it follows from a generalisation of the ancilla qubit initialisation

- actually, it is a bit surprising the former authors did not note this connection already

• Verify the theoretical construction practically, even with a higher number of data qubits (originally, they used two)

- we want to show this approach practically halves the number of LPN oracle invocations (respectively the
number of QPU runs); as we are talking about practical machine learning algorithms, this can be significant

• Discuss the quantum advantage

- we should be able to solve even the worst-case LPN instances that are unsolvable classically

- i.e. for 𝝉 = 1/2

We investigate the original (“Nature-style”) initialisation and approach

ψ 1 = 1

2n
x ⊗ 0

x∈F2
n

∑

note we have dropped the bar vector notation used before

We apply the LPN oracle operator for fk(x)
k is the hidden number, ε is the binary error factor (the noise)

x ⊗ 0 ! x ⊗ fi(x)⊕0 , where fk (x) = k⊙ x⊕ ε

ψ 2,k = 1

2n
x ⊗ 1+ (−1) fk (x)

2
0 + 1− (−1) fk (x)

2
1

⎛

⎝⎜
⎞

⎠⎟x∈F2
n

∑

︸
phase kickback effect not obvious, now

Then we apply the final Hadamard transform(s) (cf. original scheme)

ψ 3,k = 1
2n

(−1)x⊙y y ⊗ 1+ (−1) fk (x)

2 2
0 + 1()+ 1− (−1) fk (x)

2 2
0 − 1()⎡

⎣
⎢

⎤

⎦
⎥

x∈F2
n

∑
y∈F2

n
∑

= 1
2n

(−1)x⊙y y ⊗
0 + (−1) fk (x) 1

2

⎛

⎝
⎜

⎞

⎠
⎟

x∈F2
n

∑
y∈F2

n
∑ , for fk (x) = k⊙ x⊕ ε

= 1

2n 2
(−1)x⊙y y 0

x∈F2
n

∑
y∈F2

n
∑ + 1

2n 2
(−1)ε (−1)x⊙(y⊕k) y 1

x∈F2
n

∑
y∈F2

n
∑

= 1

2
00...0 0 + (−1)ε

2
k 1

︸direct secret bitsgarbage︸

Notes on the Original Approach

• We have 50% chance to measure |0> and |1> on the ancilla qubit, respectively

- measuring |0> brings no further information in data qubits

- measuring |1> reveals the hidden number (secret) k in data qubits

• In case of the positive answer, the result is totally insensitive on the ε noise

- this is certainly a good point (though not so much addressed before)

• We, however, waste around 50% of QPU runs

- we shall try to do this better, now

In Search for the Generalised Ancilla Initialisation (GAI)

• Note that the original “Nature-style” approach works practically the same way,
regardless whether the ancilla is initialised as |0> or |1>

- this suggests that both of the pure eigenstates are equally good or bad

- how about to try their superposition?

- heuristically, we try an equal superposition with a variable relative phase

The Generalised Ancilla Initialisation (GAI)

ψ 1 = 1

2n
x ⊗

0 + eiϕ 1

2

⎛

⎝
⎜

⎞

⎠
⎟

x∈F2
n

∑

Again, we apply the LPN oracle operator for fk(x)

ψ 2,k = 1

2n
x ⊗

fk (x) + eiϕ fk (x)⊕1

2

⎛

⎝
⎜

⎞

⎠
⎟

x∈F2
n

∑
︸
phase kickback can be shown for e.g. 𝝋 = 𝝅

Now, we use the final Hadamard transform(s) to see how it works

ψ 3,k = 1
2n

(−1)x⊙y y ⊗
0 + (−1) fk (x) 1

2
+ eiϕ

0 + (−1) fk (x)⊕1 1
2

⎛

⎝
⎜

⎞

⎠
⎟

x∈F2
n

∑
y∈F2

n
∑

= 1
2n

(−1)x⊙y y ⊗ (1+ eiϕ)
2

0 + (1− eiϕ)(−1) fk (x)

2
1

⎛

⎝⎜
⎞

⎠⎟
, note

x∈F2
n

∑
y∈F2

n
∑ (−1) fk (x)⊕1 = −(−1) fk (x)

= 1+ eiϕ

2n+1 (−1)x⊙y y 0
x∈F2

n
∑

y∈F2
n

∑ + 1− eiϕ

2n+1 (−1)ε (−1)x⊙(y⊕k) y 1
x∈F2

n
∑

y∈F2
n

∑ , note fk (x) = k⊙ x⊕ ε

= 1+ eiϕ

2
00...0 0 + (−1)ε (1− eiϕ)

2
k 1

︸direct secret bitsgarbage︸

Minimising the Garbage Probability

• Using GAI, we can manipulate the probabilty of the garbage |00…0>|0> state
observation

- this way, we can minimise the waste of QPU runs, so to increase effectiveness
of our LPN quantum solver

• The garbage probability is equal to zero if

1+ eiϕ = 0 ⇔ϕ = (2b+1)π , b∈!

Welcome back, please, Mr. Bernstein and Mr. Vazirani

• With 𝝋 = 𝝅, we get exactly the Bernstein-Vazirani algorithm (BVA) again

- as reformulated by Cleve et al. in “Quantum Algorithms Revisited”, 1997

- apparently, this algorithm is quite powerful for both machine learning and
cryptology

- we have shown that BVA is a general extension of the Nature-style
approach and the most efficient way to solve the LPN studied here

Experimental Implementation of the ε-error

• To fully implement the LPN oracle, we would need to be able to alter its quantum operator for each and every
QPU run

- hard to do with the actual Qiskit platform

• We decided to do an equivalent implementation based on an extra error-driving qubit

- the error is still interpreted classically, but it is inserted in a quantum way

- adding the |qε> ancilla qubit tweaks the state after the “error-free” LPN operator using a CNOT
entanglement to a superposition of error-free and erroneous substates

- our LPN solver solves both instances in parallel; finally revealing only one, depending on the error
probability distribution

- by measuring the epsilon ancilla, we can get a kind of “debug” information for further statistical processing

Epsilon Ancilla Qubit Before Entangling with the LPN Output
(General Distribution)

ψ 2,k = 1

2n
x ⊗

fk (x) + eiϕ fk (x)⊕1

2

⎛

⎝
⎜

⎞

⎠
⎟

x∈F2
n

∑ ⊗ cos
θ
2
0ε + sinθ

2
eiβ 1ε

⎛
⎝⎜

⎞
⎠⎟

︸
epsilon ancilla added; state is tweaked via tensor product

— here, the fk is just the inner product, without the epsilon error

CNOT Entangling the Epsilon Error with the LPN Output
(General Error Distribution)

ψ (ε)
2,k =

cos θ
2

2n
x ⊗

fk ,ε=0(x) + eiϕ fk ,ε=0(x)⊕1

2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟x∈F2

n
∑ ⊗ 0ε

 +
sin θ

2 e
iβ

2n
x ⊗

fk ,ε=1(x) + eiϕ fk ,ε=1(x)⊕1

2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟x∈F2

n
∑ ⊗ 1ε

— error-free branch

— here, the fk,ε is the inner product with the explicit epsilon error

— erroneous branch

What Follows

• Standard finalisation via |ѱ3>

- both error-free and erroneous branches are solved in parallel

- the measurement finally reveals either the branch for ε=0 or ε=1,
respectively

- by observing the epsilon ancilla qubit, we can get further statistical
discrimination to verify our solver works for both situations equally well

