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Revision History

- 06/10/2019/Tom - LPN introduction, Nature-style experiment elaboration 

- 07/10/2019/Tom - Generalised ancilla initialisation leading to a better algorithm 

- 08/10/2019/Tom - Improved readability by detailing key formulas derivations 

- 17/10/2019/Tom - Epsilon ancilla qubit incorporated 



Notation Notes

• ⨁ denotes (vector) addition modulo 2 

• ⨀ denotes (vector) multiplication modulo 2 

- for binary vectors, ⨀ is a standard dot product modulo 2 

- when clear from the context, we use simply + and ⨁, or ⋅ and ⨀ 
interchangeably



Symmetrisation Intermezzo

• We will often work with output of boolean functions like f(x), where x is a binary 
vector 

• This output is in general either 0 or 1 

• When designing quantum algorithms, we need to incorporate f(x) into 
superposition coefficients in a concise way to see the effect of quantum 
operators 

• For this, it is useful to transform f(x) so to make its result either -1 or 1, or to 
incorporate the effect of f(x) through a power of (-1)



Symmetrisation We Use

Let f (x)∈ 0,1{ }.

Then:
            2 f (x)−1∈ −1,1{ }, −1 iff  f (x) = 0

            (−1) f (x ) ∈ −1,1{ }, −1 iff  f (x) = 1

In particular:
            (−1) f (x ) = 1− 2 f (x)
       1+ (−1) f (x ) = 2(1− f (x))
       1− (−1) f (x ) = 2 f (x)



Also note the Hadamard transform of such a boolean f(x)

f (x) !
(−1)0⋅ f (x ) 0 + (−1)1⋅ f (x ) 1

2

=
0 + (−1) f (x ) 1

2



Learning Parity with Noise

[Krzysztof Pietrzak, 2012] 



Broad Impact of LPN

• We have chosen the Learning Parity with Noise problem for this hackathon, 
since it has considerable impact on both 

- machine learning techniques 

- post-quantum cryptography and cryptanalysis



Starting Experiment Described in Nature Partner Journal on QI (4/17)



Our Starting Position

• We consider the quantum approach to LPN solving, so we always assume the 
final Hadamard gates are on 

- omitting output Hadamard(s) was to simulate classical LPN conditions with 
the same QPU (Quantum Processing Unit) core setup 

• In the original, the LPN noise is intrinsic, generated by QPU inherently 

- we stick more with classical LPN, so we explicitly use the additive error 
factor 

- it is generated independently for each oracle-operator invocation



Our Goals

• Improve the efficiency of the original algorithm by showing its direct connection with Bernstein-Vazirani algorithm 
we elaborated in Vienna in May this year (so btw., there is an ongoing competence extension and application) 

- it follows from a generalisation of the ancilla qubit initialisation 

- actually, it is a bit surprising the former authors did not note this connection already 

• Verify the theoretical construction practically, even with a higher number of data qubits (originally, they used two) 

- we want to show this approach practically halves the number of LPN oracle invocations (respectively the 
number of QPU runs); as we are talking about practical machine learning algorithms, this can be significant 

• Discuss the quantum advantage 

- we should be able to solve even the worst-case LPN instances that are unsolvable classically  

- i.e. for 𝝉 = 1/2



We investigate the original (“Nature-style”) initialisation and approach

ψ 1 = 1

2n
x ⊗ 0

x∈F2
n

∑

note we have dropped the bar vector notation used before



We apply the LPN oracle operator for fk(x) 
k is the hidden number, ε is the binary error factor (the noise) 

x ⊗ 0 ! x ⊗ fi(x)⊕0 , where fk (x) = k⊙ x⊕ ε

ψ 2,k = 1

2n
x ⊗ 1+ (−1) fk (x )

2
0 + 1− (−1) fk (x )

2
1

⎛

⎝⎜
⎞

⎠⎟x∈F2
n

∑

︸
phase kickback effect not obvious, now



Then we apply the final Hadamard transform(s) (cf. original scheme)

ψ 3,k = 1
2n

(−1)x⊙y y ⊗ 1+ (−1) fk (x )

2 2
0 + 1( )+ 1− (−1) fk (x )

2 2
0 − 1( )⎡

⎣
⎢

⎤

⎦
⎥

x∈F2
n

∑
y∈F2

n
∑

= 1
2n

(−1)x⊙y y ⊗
0 + (−1) fk (x ) 1

2

⎛

⎝
⎜

⎞

⎠
⎟

x∈F2
n

∑
y∈F2

n
∑ , for  fk (x) = k⊙ x⊕ ε

= 1

2n 2
(−1)x⊙y y 0

x∈F2
n

∑
y∈F2

n
∑ + 1

2n 2
(−1)ε (−1)x⊙( y⊕k ) y 1

x∈F2
n

∑
y∈F2

n
∑

= 1

2
00...0 0 + (−1)ε

2
k 1

︸direct secret bitsgarbage︸



Notes on the Original Approach

• We have 50% chance to measure |0> and |1> on the ancilla qubit, respectively 

- measuring |0> brings no further information in data qubits 

- measuring |1> reveals the hidden number (secret) k in data qubits 

• In case of the positive answer, the result is totally insensitive on the ε noise 

- this is certainly a good point (though not so much addressed before) 

• We, however, waste around 50% of QPU runs 

- we shall try to do this better, now



In Search for the Generalised Ancilla Initialisation (GAI)

• Note that the original “Nature-style” approach works practically the same way, 
regardless whether the ancilla is initialised as |0> or |1> 

- this suggests that both of the pure eigenstates are equally good or bad 

- how about to try their superposition? 

- heuristically, we try an equal superposition with a variable relative phase



The Generalised Ancilla Initialisation (GAI)

ψ 1 = 1

2n
x ⊗

0 + eiϕ 1

2

⎛

⎝
⎜

⎞

⎠
⎟

x∈F2
n

∑



Again, we apply the LPN oracle operator for fk(x)

ψ 2,k = 1

2n
x ⊗

fk (x) + eiϕ fk (x)⊕1

2

⎛

⎝
⎜

⎞

⎠
⎟

x∈F2
n

∑
︸
phase kickback can be shown for e.g. 𝝋 = 𝝅



Now, we use the final Hadamard transform(s) to see how it works

ψ 3,k = 1
2n

(−1)x⊙y y ⊗
0 + (−1) fk (x ) 1

2
+ eiϕ

0 + (−1) fk (x )⊕1 1
2

⎛

⎝
⎜

⎞

⎠
⎟

x∈F2
n

∑
y∈F2

n
∑

= 1
2n

(−1)x⊙y y ⊗ (1+ eiϕ )
2

0 + (1− eiϕ )(−1) fk (x )

2
1

⎛

⎝⎜
⎞

⎠⎟
, note 

x∈F2
n

∑
y∈F2

n
∑ (−1) fk (x )⊕1 = −(−1) fk (x )

= 1+ eiϕ

2n+1 (−1)x⊙y y 0
x∈F2

n
∑

y∈F2
n

∑ + 1− eiϕ

2n+1 (−1)ε (−1)x⊙( y⊕k ) y 1
x∈F2

n
∑

y∈F2
n

∑ , note fk (x) = k⊙ x⊕ ε

= 1+ eiϕ

2
00...0 0 + (−1)ε (1− eiϕ )

2
k 1

︸direct secret bitsgarbage︸



Minimising the Garbage Probability

• Using GAI, we can manipulate the probabilty of the garbage |00…0>|0> state 
observation 

- this way, we can minimise the waste of QPU runs, so to increase effectiveness 
of our LPN quantum solver 

• The garbage probability is equal to zero if

1+ eiϕ = 0 ⇔ϕ = (2b+1)π , b∈!



Welcome back, please, Mr. Bernstein and Mr. Vazirani

• With 𝝋 = 𝝅, we get exactly the Bernstein-Vazirani algorithm (BVA) again 

- as reformulated by Cleve et al. in “Quantum Algorithms Revisited”, 1997 

- apparently, this algorithm is quite powerful for both machine learning and 
cryptology 

- we have shown that BVA is a general extension of the Nature-style 
approach and the most efficient way to solve the LPN studied here



Experimental Implementation of the ε-error

• To fully implement the LPN oracle, we would need to be able to alter its quantum operator for each and every 
QPU run 

- hard to do with the actual Qiskit platform 

• We decided to do an equivalent implementation based on an extra error-driving qubit 

- the error is still interpreted classically, but it is inserted in a quantum way 

- adding the |qε> ancilla qubit tweaks the state after the “error-free” LPN operator using a CNOT 
entanglement to a superposition of error-free and erroneous substates 

- our LPN solver solves both instances in parallel; finally revealing only one, depending on the error 
probability distribution 

- by measuring the epsilon ancilla, we can get a kind of “debug” information for further statistical processing



Epsilon Ancilla Qubit Before Entangling with the LPN Output 
(General Distribution)

ψ 2,k = 1

2n
x ⊗

fk (x) + eiϕ fk (x)⊕1

2

⎛

⎝
⎜

⎞

⎠
⎟

x∈F2
n

∑ ⊗ cos
θ
2
0ε + sinθ

2
eiβ 1ε

⎛
⎝⎜

⎞
⎠⎟

︸
epsilon ancilla added; state is tweaked via tensor product

— here, the fk is just the inner product, without the epsilon error



CNOT Entangling the Epsilon Error with the LPN Output 
(General Error Distribution)

ψ (ε )
2,k =

cos θ
2

2n
x ⊗

fk ,ε=0(x) + eiϕ fk ,ε=0(x)⊕1

2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟x∈F2

n
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              +
sin θ

2 e
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2n
x ⊗

fk ,ε=1(x) + eiϕ fk ,ε=1(x)⊕1
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⎠
⎟
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n
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— error-free branch

— here, the fk,ε is the inner product with the explicit epsilon error

— erroneous branch



What Follows

• Standard finalisation via |ѱ3> 

- both error-free and erroneous branches are solved in parallel 

- the measurement finally reveals either the branch for ε=0 or ε=1, 
respectively 

- by observing the epsilon ancilla qubit, we can get further statistical 
discrimination to verify our solver works for both situations equally well


