

Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Computer Science and Engineering

Ing. Tomáš Rosa

MODERN CRYPTOLOGY: STANDARDS ARE NOT ENOUGH
(Doctoral Thesis)

Doctoral study program: Electrical Engineering and Informatics
Study branch: Informatics and Computer Science (2612V025)

Supervisor: Doc. RNDr. Ing. Petr Zemánek, CSc.

Prague, July 2004

Dedicated to my Dedicated to my Dedicated to my Dedicated to my familyfamilyfamilyfamily. Their continuous patience and . Their continuous patience and . Their continuous patience and . Their continuous patience and
support allowed me to fully concentrate on research in the support allowed me to fully concentrate on research in the support allowed me to fully concentrate on research in the support allowed me to fully concentrate on research in the

fascinating areafascinating areafascinating areafascinating area of modern cryptology. of modern cryptology. of modern cryptology. of modern cryptology.

ii

Content

MODERN CRYPTOLOGY: STANDARDS ARE NOT ENOUGH.................. 1
1. INTRODUCTION – STATE OF THE ART.. 1
2. GOALS OF THE DOCTORAL THESIS .. 3
3. ORGANIZATION OF THE THESIS AND RESULTS SUMMARY................................. 3

3.1 Chapter A. Side Channel Cryptanalysis – An Overview............................ 4
3.2 Chapter B. Attack on Private Signature Keys of the OpenPGP format,

PGPTM programs and other applications compatible with OpenPGP...... 4
3.3 Chapter C. Further Results and Considerations on Side Channel Attacks

on RSA .. 5
3.4 Chapter D. Strengthened encryption in the CBC mode............................. 5
3.5 Chapter E. Side Channel Attacks on CBC Encrypted Messages in the

PKCS#7 Format.. 6
3.6 Chapter F. Attacking RSA-based Sessions in SSL/TLS.............................. 6
3.7 Chapter G. Key-collisions in (EC)DSA: Attacking Non-repudiation 7

ACKNOWLEDGEMENTS ... 7
REFERENCES... 8

A. SIDE CHANNEL CRYPTANALYSIS – AN OVERVIEW 9
1. INTRODUCTION ... 9
2. THE CONCEPT OF SIDE CHANNELS.. 9

2.1 Initial Experiments and Observations ... 9
2.2 The Term "Cryptographic Module"... 9
2.3 Formal Definition.. 9
2.4 Simple and Differential Analysis ... 9
2.5 Special Analyses and their Relations to the Differential Ones 9
2.6 Fault Side Channels .. 9
2.7 Kleptographic Side Channels .. 9
2.8 A Note on an Information-Theoretic Approach and the Concept of Covert

Channels ... 9
2.9 Classification by the Level of Control over the Attacked Module 9

3. THE TERMS TAMPERING AND TEMPEST... 9
4. CONCLUSION... 9
REFERENCES... 9

B. ATTACK ON PRIVATE SIGNATURE KEYS OF THE OPENPGP
FORMAT, PGPTM PROGRAMS AND OTHER APPLICATIONS
COMPATIBLE WITH OPENPGP ... 9

1. INTRODUCTION ... 9
2. DSA SIGNATURE ALGORITHM .. 9

2.1 Creation of a Key Pair... 9
2.2 Creation of a Digital Signature ... 9
2.3 Verification of a Digital Signature .. 9

3. DESCRIPTION OF THE SECRET KEY PACKET DATA STRUCTURE FOR STORAGE OF
THE PRIVATE SIGNATURE KEY ACCORDING TO OPENPGP.............................. 9

iii

4. ATTACK ON DSA SIGNATURE ALGORITHM .. 9
4.1 Attack Description ... 9
4.2 Practical Implementation of the Attack ... 9

5. ATTACK ON RSA SIGNATURE ALGORITHM IN OPENPGP.................................. 9
5.1 Brief Description of RSA Signature Transformation 9
5.2 Description of Attack on the RSA Signature Key....................................... 9

6. ATTACK ON THE PRIVATE KEYS AFTER THEIR EXPORT..................................... 9
7. COUNTERMEASURES ... 9

7.1 Basic Temporary Countermeasures .. 9
7.2 Temporary Test for DSA.. 9
7.3 Temporary Test for RSA .. 9
7.4 Other Topics for the OpenPGP Format .. 9

8. IMPACTS.. 9
9. CONCLUSION... 9
REFERENCES... 9
APPENDIX 1: DETERMINATION OF A PRIVATE KEY VALUE BY CHANGING THE

DSA PUBLIC PARAMETERS ... 9
Step 1: Determination of the set K... 9
Step 2: Determination of the value x ... 9

ALGORITHM A1: CALCULATION OF w, w = loggr, FOR SPECIAL TYPE OF ZP
* 9

Step 1: Determination of the value sw = w mod 2s .. 9
Step 2: Determination of the value tw = w mod t .. 9
Step 3: Determination of the value w = loggr.. 9
Experimental Results ... 9

APPENDIX 2: ATTACK ON A PRIVATE RSA KEY ... 9
C. FURTHER RESULTS AND CONSIDERATIONS ON SIDE CHANNEL

ATTACKS ON RSA.. 9
1. INTRODUCTION ... 9
2. SIDE CHANNEL ATTACK ON RSAES-OAEP PLAINTEXT 9

2.1 Attack Description ... 9
2.2 Obtaining the Least Significant Bit of a Plaintext (Building an lsb-

Oracle).. 9
3. NOTE ON CONVERTING THE DECIPHERING ORACLE TO A SIGNING ORACLE 9
4 SIDE CHANNEL ATTACK ON RSA-KEM... 9

4.1 Confirmation Oracle... 9
4.2 Fault Side Channel Attacks ... 9
Step 1: Computation of the value Ds = d mod 2s ... 9
Step 2: Computation of the value Dt = d mod t ... 9
Step 3: Computation of the value d.. 9
4.3. General Countermeasures .. 9

5 CONCLUSION .. 9
REFERENCES... 9

D. STRENGTHENED ENCRYPTION IN THE CBC MODE 9
1. INTRODUCTION ... 9

1.1 Example ... 9

iv

2. NEW PROPOSALS FOR STRENGTHENED ENCRYPTION OF THE LAST BLOCK IN
THE CBC MODE .. 9

2.1 Strengthened Encryption - Variant A... 9
2.2 Strengthened Encryption - Variants B1 and B2... 9
2.3 Strengthened Encryption - Variant C .. 9

3. HEURISTIC ANALYSIS ... 9
4. CONCLUSION... 9
REFERENCES... 9

E. SIDE CHANNEL ATTACKS ON CBC ENCRYPTED MESSAGES IN
THE PKCS#7 FORMAT.. 9

1. INTRODUCTION ... 9
2. PRELIMINARIES ... 9

2.1 Notation ... 9
2.2 PKCS#7 Data Structures ... 9
2.3 Encryption in the PKCS#7 Version 1.5 and 1.6 .. 9
2.4 ABYT-PAD Padding Scheme ... 9

3. CONFIRMATION ORACLE PKCS#7CONF ... 9
4. ATTACK DESCRIPTION .. 9

4.1 Preparation Phase: Finding the Length L of the Message 9
4.2 Computing X = DK(Y), Leaving One Byte of Uncertainty 9
4.3 Determining the Remaining Byte of Uncertainty....................................... 9

5. COMPLEXITY OF THE ATTACK AND ITS EXTENSIONS .. 9
6. COUNTERMEASURES ... 9
7. CONCLUSIONS... 9
REFERENCES... 9

F. ATTACKING RSA-BASED SESSIONS IN SSL/TLS................................... 9
1. INTRODUCTION ... 9
2. BAD-VERSION ORACLE... 9
3. ATTACKING PREMASTER-SECRET ... 9

3.1 Mounting and Extending Bleichenbacher’s Attack.................................... 9
3.2 S-PKCS and BVO Properties .. 9
3.3 Basic General Optimizations... 9
3.4 Note on Forging a Server’s Signature... 9

4. COMPLEXITY MEASUREMENTS ... 9
4.1. Simulated Local BVO ... 9
4.2. Real Attack.. 9
4.3. Real Vulnerability... 9

5. TECHNICAL DETAILS .. 9
5.1 Constructing BVO ... 9
5.2 Version Number... 9

6. COUNTERMEASURES ... 9
6.1 Promising Countermeasures which Are Cryptographically Odd 9
6.2 Countermeasure which Is Both Practically and Cryptographically

Bearable.. 9
7. CONCLUSIONS... 9

v

REFERENCES... 9
APPENDIX ... 9

G. KEY-COLLISIONS IN (EC)DSA: ATTACKING NON-REPUDIATION. 9
1. INTRODUCTION ... 9
2. K-COLLISIONS – DEFINITIONS ... 9

2.1 Illustrative example of a practical attack .. 9
2.2 Another example.. 9

3. GENERALIZED DSA .. 9
3.1 DSA.. 9
3.2 ECDSA... 9

4. K-COLLISIONS FOR GDSA... 9
5. BASIC LIMITS FOR GENERAL K-COLLISION SEARCHING ALGORITHMS.............. 9
6. COUNTERMEASURES ... 9

6.1 Basic Reasoning .. 9
6.2 Online Protocol ... 9
6.3 Non-invertible GDSA Setup... 9
6.4 Notary Services and-or Authentication of Public Instances 9

7. CLOSING REMARKS... 9
8. CONCLUSION... 9
REFERENCES... 9
APPENDIX A: ALGORITHM 4.1 EDITED FOR DSA AND ECDSA............................. 9

1

Modern Cryptology: Standards Are Not Enough

Tomáš Rosa

Department of Computer Science and Engineering
Faculty of Electrical Engineering, Czech Technical University, Karlovo náměstí 13, 121 35

Prague 2, Czech Republic, EU

Abstract. Development and implementation of various standards represent the
mainstream of contemporary cryptography. Standards such as AES, SHA-1,
DSA, ECDSA, RSA or standards such as PKCS, etc. are good examples of that.
These standards are kept up-to-date and made public. Does this mean that
anyone with a basic knowledge of computer architecture and discrete
mathematics can simply build up a secure cryptographic module following
these standards? Also, does this tell us that all cryptographic modules using the
same cryptographic standard have the same level of security? Unfortunately, it
does not. The main focus of the thesis is to draw an attention on several topics
of the area of applied cryptography, which are very often neglected by many
security architects. These topics will be demonstrated mainly on practically
feasible attacks which were or would be possible because of architects of
security modules or even standards did not pay appropriate attention to certain
key aspects of applied cryptography. It turns out that, despite of surviving belief
of various experts, following even highly trusted security standards is simply
not enough to build up a really secure security module. These standards can be
used as useful hints of what we shall (not) do, but the definite responsibility of
checking potential vulnerabilities of a particular security module designed is
still left on their architects.

1. Introduction – State of the Art

There are two basic questions which seem to be so important for identifying and
resolving potential vulnerabilities that even a high-skilled security architect should
not regret of paying an appropriate attention to them. The first question is:

What environment shall the designed module be used in?

The main aim of every security module is to defeat certain vulnerabilities of a
target system (for example an online banking application) to lower risks coming from
potential threats. For this purpose, the threat is defined as an event which could cause
a certain loss of subjects incorporated in using the particular application (here, it
could be a threat of stealing an access to somebody’s banking account, etc.). The
vulnerability is then defined as a set of conditions which allow the particular threat to
harm the system (here, it could be a security hole in an authentication module, etc.).
Since the set of concrete threats together with their characteristics is given mainly by
a concrete environment in which the designed module will be used, it is absolutely

2

necessary to answer the first question mentioned above and to make up an accurate
threat model. In such a model, we must then carefully examine as many properties of
the module as we can to verify whether the module will really remove all those
vulnerabilities or not. Moreover, we must also check if there are not some new
vulnerabilities which would be introduced by applying this module. Otherwise, it may
happen that the designed module will have such property that would turn out to be a
serious vulnerability allowing disastrous threat to occur. Although it may seem as
nothing more than just repeating basis of the best designing practice, the reality shows
that most of devastating attacks are possible mainly because of the fact that this code
of best practice is being constantly underestimated and overlooked. For instance,
ignoring physical properties of cryptographic modules (i.e. the environment which
surrounds every physical device) motivated the development of a brand new, rapidly
developing area of cryptanalytical techniques called side channel cryptanalysis.
Roughly speaking, introduction of this theory (around 1996) was the time when
devastating attacks returned back to the papers presented at conferences on
cryptology. We may really say that it was a revolution in contemporary cryptology
which, hopefully, changed the way of viewing and modeling cryptographic modules.
However, it will probably take some time until this theory becomes also practice. At
the time of completing the thesis (spring-summer of 2004), side channel attacks are
still very dangerous and very few modules can be regarded as reasonably protected
against them. Therefore, most of the papers included in this thesis are focused on side
channel attacks to deeply illustrate their nature and some techniques to defeat them.

The second key question is:

What is the easiest problem an attacker has to solve to break the module in
some way?

As security architects, we should answer this question when we have an accurate
threat model constructed in the previous step. It is important to note that, for example,
identifying potential side channels would be of no benefit if we underestimate the way
they would help an attacker to break into the system. The core is that traditional
theoretical cryptanalysis tends to be focused on well-known, “well-hard” problems
(such as factorization, discrete logarithm, etc. c.f. [9], [20]), while the particular
problems an attacker has to solve in practice to be able to say that “she broke the
system” are often essentially easier. Consequences of overlooking this aspect can be
again easily seen from unusually good results obtained by side channel attacks.
However, side channels are not the only one area where we can see that. As an
example, we have also included in chapter G (see organization notes bellow) a new
kind of attack on the well-known signature schemes DSA and ECDSA [4], [9], [20].
This is not a side channel attack, but it can also introduce serious weaknesses in
certain systems based on a growing phenomenon of electronic signatures.
Furthermore, we did not have to solve any from those “well-hard” problems (here
namely the discrete logarithm problem) to do our attack. What we actually did is that
we exploited such a property of these schemes which tends to be constantly
overlooked by many researchers.

Certain evidences, that answering the above mentioned questions is of a crucial
importance, can be seen if we look carefully at the attacks studied and presented at
various conferences in the past and nowadays. The attacks discussed in the past were

3

almost solely focused on cryptanalysis of intercepted cryptograms, while the ones
presented nowadays are somehow mentioning playing an interactive game between an
attacker and her victim. This naturally reflects the way in which cryptosystems are
implemented into practical applications. Being in the role of the attacker, we do not
have to rely solely on randomly intercepted cryptograms any more. Playing the
interactive game with our victim, we can “adjust” the conditions of our attack to
finally get as easiest mathematical problem to solve as possible. Although it can be
perhaps a bit “disgusting” for a beautiful mathematical mind, this subject must be
studied and understood properly to tightly grasp what the contemporary cryptology is
all about, which is then necessary to be able to fight with modern attackers as
effectively as possible. Author’s opinion here is that even in this area of so-called
theory of applied cryptography, one can find very interesting problems for any taste
of mathematical complexity and-or engineering practice. This is the main motto
behind the papers written and completed in this thesis.

2. Goals of the Doctoral Thesis

The main goals of the dissertation are:

• To investigate several selected security standards which are widely used in
contemporary security modules in order to see if they are designed properly
according to particular key issues of modern cryptology (c.f. §1 above).

• To propose, elaborate, and describe possible practical attacks based on
vulnerabilities found in these standards. The main focus is on the area of
side channel cryptanalysis which is highly promising and rapidly growing
part of contemporary cryptanalysis.

• To design and-or suggest effective countermeasures against discovered
attacks.

• To contribute to a general theory of side channel cryptanalysis. Since this
kind of cryptanalysis is the main tool used in the thesis, together with the
fact that it is still rapidly growing, it would be desirable to try to
independently generalize certain new ideas which were discovered for the
purpose of the attacks presented here. We note that this goal is mainly
achieved in the overviewing part of the thesis (c.f. organization of the thesis
bellow) where a practical enhancement of classification methodology is
proposed. Certain general results and observation are also pointed out in
detailed descriptions of particular attacks.

3. Organization of the Thesis and Results Summary

The thesis consists of extended versions of papers which reflect author’s results
obtained during his PhD research. Each paper represents one chapter of the thesis

4

indexed as A, B, …, G. The relevant information on how and where particular papers
were published, is included as footnotes at their relevant starting pages. Short
abstracts of each chapter showing the main author’s results obtained follow.

3.1 Chapter A. Side Channel Cryptanalysis – An Overview

Growing theory of the side channel cryptanalysis shows the necessity of building and
using general models of cryptographic modules when their security has to be
examined. Traditional approach, which was used before, was to examine these
modules as abstract mathematical functions without their connection to the objective
physical reality. It shows that particular physical properties can prominently spread
the set of vulnerabilities and available cryptanalytic techniques. From here follows
their impact on the security. The information available due to particular physical
properties is referred to as side information. The means, which the side information is
transmitted by, are then referred to as side channels. Practically, side channels are
often represented as physical magnitudes, which are in some ways related to an
activity of the cryptographic module being examined (the amount of time it takes to
perform some operation, the power trace, the electromagnetic emanation, etc.). This
overviewing chapter presents various general aspects of the theory of side channel
cryptanalysis. It introduces particular types of side channels, which are known up to
now, and it sketches, how these side channels can be used for cryptanalytic purposes.
It also proposes a general classification methodology which allows practically useful
distinguishing between various channels and their analyses. Furthermore, it separates
the terms channel, signal, analysis, and information which should also be practically
beneficial.

3.2 Chapter B. Attack on Private Signature Keys of the OpenPGP format,
PGPTM programs and other applications compatible with OpenPGP

In this chapter, we describe an attack on the OpenPGP format [17], which leads to a
disclosure of private signature keys of the DSA [4] and RSA [18] algorithms. The
OpenPGP format is used in a number of applications including PGP, GNU Privacy
Guard and other programs specified on the list of products compatible with OpenPGP,
which is available at http://www.pgpi.org/products. Therefore all these applications
shall undergo the same revision as the actual program PGPTM. The success of the
attack was practically verified and demonstrated on the PGPTM(*) program version
7.0.3 with a combination of the AES [5] and DH/DSS algorithms [17]. As the private
signature key is the basic information of the whole system which is kept secret, it is
encrypted using the strong cipher. However, we show that this protection is weak, as
the attacker has neither to attack this cipher nor user´s secret passphrase. A
modification of the private key file in a certain manner and subsequent capturing of
one signed message is sufficient for a successful attack. A vulnerability coming from
an insufficient protection of the integrity of the public as well as private parts of

(*) PGP is registered trade mark of Network Associates, Inc. All other registered and not

registered trade marks listed in this document are owned by their appropriate owners.

5

signature keys in the OpenPGP format is analyzed. On the basis of this, a procedure
of attacks is shown on both DSA and RSA private signature keys. The attacks apply
to all lengths of parameters (modules, keys) of RSA and DSA. The cryptographic
countermeasures for correction of the OpenPGP format as well as the PGPTM format
are proposed.

3.3 Chapter C. Further Results and Considerations on Side Channel Attacks on
RSA

The research presented in this chapter contains three parts. In the first part, we present
a new side channel attack on a plaintext encrypted by EME-OAEP PKCS#1 v.2.1
[11]. In contrast with recent well-known Manger's attack [7], we attack directly that
part of the plaintext, which is shielded by the OAEP method. In the second part, we
remind that Bleichenbacher's [2] and Manger's attack on the RSA encryption scheme
PKCS#1 v.1.5 and EME-OAEP PKCS#1 v.2.1 can be converted to an attack on the
RSA signature scheme with any message encoding (not only PKCS). In the third part,
we deploy a general idea of fault-based attacks (we introduce a notion of confirmation
oracle) on the RSA-KEM [19] scheme which was suggested as a possible solution to
implementation attacks (e.g. side channel attacks) which seem to be constant
problems of the schemes from [11]. We present two particular attacks as examples to
show that this solution is clearly not a definite one. The result of these attacks is the
private key instead of the plaintext as with attacks on PKCS#1 v.1.5 and v.2.1. These
attacks should highlight the fact that the RSA-KEM scheme is not an entirely
universal solution to problems of RSAES-OAEP implementation and that even here
the manner of implementation is significant.

3.4 Chapter D. Strengthened encryption in the CBC mode

Vaudenay [21] has presented a side channel attack on the CBC mode of block ciphers
([10], [16]), which use padding according to the PKCS#5 standard [12]. One of the
countermeasures, which he assumed, consisted of the encryption of the message M´=
M || padding || hash(M || padding) instead of the original M, where hash is an
appropriate cryptographic hash function. This can increase the length of the message
by several blocks compared with the present padding. Moreover, Wagner [21] showed
a security weakness in this proposal. The next correction, which Vaudenay proposed
("A Fix Which May Work") has a general character and doesn't solve practical
problems with the real cryptographic interfaces used in contemporary applications. In
this article we propose three variants of the CBC mode. From an external point of
view, they behave the same as the present CBC mode with the PKCS#5 padding, but
they prevent Vaudenay's attack. In this chapter, we also make use of the notion of
confirmation oracle which has been introduced in chapter C.

6

3.5 Chapter E. Side Channel Attacks on CBC Encrypted Messages in the
PKCS#7 Format

As shown by Vaudenay in [21] and also discussed in chapter D in this thesis, a CBC
encryption mode ([10], [16]) combined with the PKCS#5 padding [12] scheme allows
an attacker to invert the underlying block cipher, provided she has an access to a
valid-padding oracle which for each input ciphertext tells her whether the
corresponding plaintext has a valid padding or not. Having in mind the
countermeasures against this attack, different padding schemes have been studied in
[1]. The best one is referred to as the ABYT-PAD. It is designed for byte-oriented
messages. It removes the valid-padding oracle, thereby defeating Vaudenay's attack,
since all deciphered plaintexts are valid in this padding scheme. In this chapter, we try
to combine the well-known cryptographic message syntax standard PKCS#7 [13]
with the use of ABYT-PAD instead of PKCS#5. We also make use of a generalized
notion of the confirmation oracle introduced in chapter C. Let us assume that we have
access to a PKCS#7CONF confirmation oracle that tells us for a given ciphertext
(encapsulated in the PKCS#7 structure) whether the deciphered plaintext is correct or
not according to the PKCS#7 (v1.6) syntax [3]. This is probably a very natural
assumption, because applications usually have to reflect this situation in their
behavior. It could be a message for a user, an API error message, an entry in the log
file, different timing behavior, etc. We show that an access to such an oracle again
enables an attacker to invert the underlying block cipher. The attack requires single
captured ciphertext and approximately 128 oracle calls per one ciphertext byte. It
shows that we cannot hope to fully solve problems with side channel attacks on the
CBC encryption mode by using a “magic” padding method or an obscure message-
encoding format. Strong cryptographic integrity checks of ciphertexts should be
incorporated instead.

3.6 Chapter F. Attacking RSA-based Sessions in SSL/TLS

In this chapter, we present a practically feasible attack on RSA-based sessions in
SSL/TLS protocols [15], [14]. These protocols incorporate the PKCS#1 (v. 1.5) [11]
encoding method for the RSA encryption of a premaster-secret value. The premaster-
secret is the only secret value that is used for deriving all the particular session keys.
Therefore, an attacker who can recover the premaster-secret can decrypt the whole
captured SSL/TLS session. We show that incorporating a version number check over
PKCS#1 plaintext used in the SSL/TLS creates a side channel that allows the attacker
to invert the RSA encryption. The attacker can then either recover the premaster-
secret or sign a message on behalf of the server. Practical tests showed that two thirds
of randomly chosen Internet SSL/TLS servers were vulnerable. The attack is an
extension of Bleichenbacher’s attack on PKCS#1 (v. 1.5) [2]. We introduce the
concept of a bad-version oracle (BVO) that covers the side channel leakage, and
present several methods that speed up the original algorithm. Our attack was
successfully tested in practice and the results of complexity measurements are
presented here. Plugging a testing server (2x Pentium III/1.4 GHz, 1 GB RAM, 100
Mb/s Ethernet, OS RedHat 7.2, Apache 1.3.27), it was possible to achieve a speed of

7

67.7 BVO calls per second for a 1024 bits RSA key. The median time for a whole
attack on the premaster-secret could be then estimated as 54 hours and 42 minutes.
We also propose and discuss countermeasures, which are both cryptographically
acceptable and practically feasible.

3.7 Chapter G. Key-collisions in (EC)DSA: Attacking Non-repudiation

A new kind of attack on the non-repudiation property [6] of digital signature schemes
is presented. We introduce a notion of key-collisions, which may allow an attacker to
claim that the message (presented to a judge) has been signed by someone else. We
show how to compute key-collisions for the DSA and ECDSA signature schemes [4]
effectively. The main idea of these attacks has been inspired by the well-known
notion of message-collisions, where an attacker claims that the signature presented at
the court belongs to a different message ([9], [20]). Both of these collision-based
attacks significantly weaken the non-repudiation property of signature schemes.
Moreover, they weaken the non-repudiation of protocols based on these schemes. It is
shown that key-collision resistance of the (EC)DSA schemes requires the
incorporation of a mechanism ensuring honest generation of (EC)DSA instances. The
usage of such a mechanism shall be verifiable by an independent third party without
revealing any secret information. We propose and discuss basic general
countermeasures against key-collision attacks on the (EC)DSA schemes. We also
show that the whole notion of key-collisions can be regarded as a platform for
generalization of attacks discussed by Massias, Serret Avila, and Quisquater in [8].
The fact, that the area of key-collision attacks is not solved by the standard [4] itself,
again emphasizes the main motto of modern cryptology saying that standards are
clearly not enough.

Acknowledgements

First of all, the author is grateful to his postgraduate supervisor Petr Zemánek and his
colleague Vlastimil Klíma. Their inspiring suggestions, encouragement, and close
cooperation made many things possible.

I would also like to thank to Pavel Rydlo for a technical co-operation in practical
implementation of the attack described in chapter B and to Ondřej Pokorný, Jiří Hejl,
Roman Kalač, and Libor Kratochvíl for their help and consultations with a practical
realization of the attack presented in chapter F. I found also beneficial those inspiring
and encouraging comments from anonymous referees of the international workshops
NATO CATE SPI 2001, NATO CATE SPI 2003, CHES 2002, and CHES 2003.
Special thanks also belong to Pavel Třešňák, Jared Smolens, and the companies ICZ
a.s. and eBanka a.s.

8

References

1. Black, J. and Urtubia, H.: Side-Channel Attacks on Symmetric Encryption Schemes:
The Case for Authenticated Encryption, In Proc. of 11th USENIX Security
Symposium, San Francisco 2002, pp. 327-338

2. Bleichenbacher, D.: Chosen Ciphertexts Attacks Against Protocols Based on the RSA
Encryption Standard PKCS#1, in Proc. of CRYPTO '98, pp. 1-12, 1998

3. Extensions and Revisions to PKCS #7 (Draft PKCS #7 v1.6), An RSA Laboratories
Technical Note, May 13, 1997

4. FIPS PUB 186-2: Digital Signature Standard (DSS), National Institute of Standards
and Technology, January 27, 2000, update: October 5, 2001

5. FIPS PUB 197: Advanced Encryption Standard (AES), National Institute of
Standards and Technology, November 26, 2001

6. Landwehr, C.-E.: Computer Security, International Journal of Information Security,
Vol 1, Issue 1, pp. 3-13, Springer-Verlag, 2001

7. Manger, J.: A Chosen Ciphertext Attack on RSA Optimal Asymmetric Encryption
Padding (OAEP) as Standardized in PKCS #1, in Proc. of CRYPTO 2001, pp. 230-
238, 2001

8. Massias, H., Serret Avila, X., and Quisquater, J.-J.: Timestamps: Main issues on their
use and implementation, In Proc. of IEEE 8th International Workshop on Enabling
Technologies: Infrastructures for Collaborative Enterprises-Fourth International
Workshop on Enterprise Security, pp. 178-183, June 1999

9. Menezes A.J., Oorschot P.C., and Vanstone S.A.: Handbook of Applied
Cryptography, CRC Press, 1997

10. NIST Special Publication SP 800-38A 2001 ED, Recommendation for Block Cipher
Modes of Operation, December 2001

11. PKCS#1 v2.1: RSA Cryptography Standard, RSA Labs, DRAFT2, January 5 2001
12. PKCS#5 v2.0: Password-Based Cryptography Standard, RSA Labs, March 25, 1999
13. PKCS#7 v1.5: Cryptographic Message Syntax Standard, RSA Laboratories,

November 1, 1993
14. Rescorla, E.: SSL and TLS: Designing and Building Secure Systems, Addison-

Wesley, New York, 2000
15. RFC 2246: Allen, C. and Dierks, T.: The TLS Protocol, Version 1.0, January 1999
16. RFC 2268: Baldwin, R. and Rivest, R.: The RC5, RC5-CBC, RC5-CBC-Pad, and

RC5-CTS Algorithms, October 1996
17. RFC 2440: Callas, J., Donnerhacke, L., Finney, H., and Thayer, R.: OpenPGP

Message Format, November 1998
18. Rivest, R., L., Shamir, A., and Adleman L.: A method for obtaining digital signatures

and public-key cryptosystems, Communications of the ACM, pp. 120-126, 1978
19. Shoup, V.: A Proposal for an ISO Standard for Public Key Encryption (version 2.0),

September 17, 2001
20. Stinson, D., R.: Cryptography – Theory and Practice, CRC Press, 1995
21. Vaudenay, S.: Security Flaws Induced By CBC Padding - Application to SSL, IPSEC,

WTLS..., EUROCRYPT '02, pp. 534-545, Springer-Verlag, 2002

9

A. Side Channel Cryptanalysis – An Overview*

1. Introduction

It is becoming a well-known fact that the proper design of a particular cryptosystem
in “paper form” is one thing, but its implementation into a physical device is another
one. The main security risk here comes from evaluating only the mathematical
properties of the designed cryptosystem, while at the same time underestimating the
physical properties the system will have after its implementation in the “real world”.

Almost all physical properties (including an electromagnetic emanation) of the
cryptographic module that can be precisely measured or carefully altered can be used
for some kind of attack. These attacks however are not visible in the pure
mathematical description of the given cryptosystem. This is why contemporary
cryptography tends to be a highly interdisciplinary science requiring balanced skills in
mathematics, physics and electrical engineering.

In this chapter, we will show the general concept of attacks based on the physical
properties of attacked modules. We will try to keep the focus on the general properties
of these attacks as much as it will be possible. However sometimes we will need to
introduce some practical example. In such cases, we will use the asymmetrical
cryptosystem RSA [46] because it seems to be the most illustrative cryptographic
mechanism for such a purpose. Many of the attacks discussed later on have been
successfully tested on this mechanism.

2. The Concept of Side Channels

There were times when cryptographic experts were primarily concentrated on
designing and analysing basic cryptographic schemes, such as encryption algorithms,
signature schemes, authentication protocols, etc. Interconnections among these
mechanisms were very rarely considered and the problem of their physical
implementation was nearly completely neglected. Since about 1996 (except for secret
intelligence services), this approach has been belonging in museums and chronicles of
cryptography only. The reason is simple: If we examine the basic mathematical
description of a selected mechanism only, without considering its physical
implementation, we are enclosed in an abstract world that is, less or more, different
from the real world where the designed tool is to be used. Our view is thus sort of
foggy and some serious defects can easily be overlooked.

* An extended version of the paper: Rosa, T.: Future Cryptography: Standards are not

Enough, in Proc. of Security and Protection of Information 2001, Military Academy in Brno,
pp. 237-245, NATO-IDET, Brno, 9. - 11. of May, 2001.

10

The entire situation is illustrated by figures 1 and 2. In the first one, we can see the
mechanism being examined in the way we imagine it in the abstract mathematical
world in which it was designed and analysed. In the second figure, the same
mechanism is shown, however, considering appropriate implementation details. As
a simplification, we can say that the difference consists in the fact that the second
figure shows the communication channels that were not considered by the author and
that can transfer information that was not even fancied by the cryptanalyst examining
the security level. Additionally, these channels can be duplex under some
circumstances. An attacker is allowed to not only monitor the internal behaviour of
the attacked system; she can even make the system change its internal status
according to her wishes. In view of this, a mathematically quality cryptoscheme may
turn out to be completely useless.

Fig. 1. An attack model without considering the physical module construction

Fig. 2. An attack model with considering the effect of the module physical properties

Attacker

cryptographic module

inner cryptosystem

keys and other sensitive values

input
data

output
data

side channels

cryptographic module

inner cryptosystem

keys and other sensitive values

input
data

output
data

Attacker

11

2.1 Initial Experiments and Observations

One of the first works seriously discussing the influence of cryptographic modules
architecture to their security was probably the article [29]. The author realizes the
usefulness of the information that an attacker can get by carefully measuring the
duration of an asymmetric cryptographic transformation which uses an unknown
private key. This information turned out to be potentially very useful and can result in
revelation of the private key for some cryptographic mechanisms, such as RSA,
Diffie-Hellman's protocol, or DSS signature scheme (for an overviewing description
of these mechanisms see [36], [53]). The article [5] was published in the same year.
Its authors, more informally indeed, but very hard warn about the possibility of
abusing the channels sketched in figure 2 for attacking chip cards. They weaken
particularly the dogma established until that time that a chip card is an autonomous
device whose physical protection provides a sufficient protection against external
attackers for the internal cryptographic mechanisms of the card. While the attack
described in [29] considered the channels shown in figure 2 as a simplex way from
the module to the attacker (the attackers just "read" the computation time), the authors
of this report demonstrate the possibility of an unauthorised affection of the
operations of the attacked module and its consequences, i.e. they show that an
attacker can also use side channels to “write” some information into the module. Such
an injection of unauthorised information is often used as a primary step which then
opens a simplex fault side channel going from the module to the attacker (c.f. fault
side channel attacks later on in the thesis).

As an example, let us illustrate the attack by the article [5] which has a real base in
the area of attacks on prepaid TV cards. Let us suppose that there is a sequence of
commands (written in a C-like pseudocode) in the attacked device that is used for a
serial transmission of the output data:

1. b = output_message_address
2. a = output_message_length
3. if (a == 0) goto 8
4. Send(*b)
5. b = b+1
6. a = a-1
7. goto 3
8. ... //continue after sending the message

In this case, the attacker aims at affecting the attacked device processor behaviour to
either ignore the conditional jump in the 3rd line or not to decrement the counter in the
6th line. This can be achieved by, e.g. a short power impulse or by a short disturbance
of the clock signal. The concrete technique strongly depends on the device (mostly
a chip card) construction. If this is successfully completed, the originally harmless
sequence of commands used for the output of a common message can then be used for
reading of the memory contents over the extent of the data being sent. If the attacker
is a bit lucky, she may get access to private keys or other sensitive information stored
behind the addresses of that message.

12

As another illustration example of the existence of communication channels that
are invisible at first sight, we will describe the experiment that was performed at the
University of Cambridge and described in the article [7], c.f. also [52], [20]. We will
show how a common workstation monitor can be used in order to create an
electromagnetic side channel and to transmit selected information over that channel.
A channel created by transmitting an amplitude modulated (AM) signal is used for the
transmission. In general, with respect to a formal terminology introduced later on in
this chapter, we talk about a kleptographic side channel here which, for example, can
be used by a Trojan horse to transmit some secret information from a computer that is
disconnected from any network an therefore mistakenly considered safe.

Let us briefly recall the mathematical function describing a general AM signal.
Denoting s(t) the value of the signal at time t, we can write:

s(t) = A*cos(2πfct)*(1+m*cos(2πftt)) = A*(cos(2πfct) + (m/2)*cos(2π(fc –
 ft)t) + (m/2)*cos(2π(fc + ft)t)).

In the formula above, we denoted the signal amplitude as A, the modulation depth
as m, the carrier frequency as fc, and the modulated (tone) signal frequency as ft. We
can see that, unlike for a voice signal transmission, a very simple cosine signal
transmission is assumed here. However, this does not represent a serious limitation
for us, as we are concentrating solely on a digital signal transmission. For example,
we can use the frequency modulation (actually the FSK – Frequency Shift Keying
method, since the frequency shift is discrete in this case) of the cosine signal
transmitted assuming that a frequency ft represents the value of 1 and a different
frequency ft

’ (ft
’ ≠ ft) represents the value of 0. A possible way of implementation of

the frequency shift will be described later on.

Fig. 3. Frequency spectrum of an AM signal

Looking at the expression describing the signal s(t), we can see the well-known
AM signal frequency spectrum distribution consisting of the carrier frequency fc and
the frequencies of so-called lower and upper sidebands: fc-ft and fc+ft. A graphical
illustration of the distribution is shown in figure 3. Although this AM signal attribute
was not utilised in the original experiment, it is good to mention it here because from
the ratio of amplitudes in the figure, we can see that most energy is consumed for
emission of the periodical signal with the frequency fc that does not carry any useful
information (it is independent on ft). Therefore, there is a quite common practice

frequency

amplitude

fc fc - ft fc + ft

13

about transmitting an AM signal, that the carrier frequency together with one of the
sidebands are suppressed prior to the start of transmission and only the remaining
sideband is transmitted instead. This signal conditioning results in a more efficient use
of the transmitter performance. The disadvantage of this solution is the necessity of
restoring the original carrier frequency at the receiver’s side, which is not always
simple, especially if the original carrier frequency is not very stable. The main reasons
why the experiment authors avoided this way of transmission were probably the
impossibility of using a commonly available AM receiver. However, in case of
elaborating their experiment with the aim of a practical application for intelligence
purposes, this way of transmission should also be considered.

Let us discuss how the signal s(t) can be emitted using a workstation monitor now.
To be able to answer this question, we need to become familiar with the basic
parameters that describe the process of displaying data on screen. The very basic
value is the pixel frequency fp, whose inverse value determines the time the beam
needs for moving from a pixel (x, y) to the pixel (x+1, y). Based on this frequency, the
horizontal (row) frequency can be defined as fh = fp/xt, where xt is the horizontal
resolution of the screen (including so-called hidden pixels). Analogically, the vertical
(frame) frequency can be defined as fv = fh/yt, where yt represents the vertical
resolution of the screen (including the hidden pixels).

The visible area of the screen is defined by the horizontal resolution xd and the
vertical resolution yd (both in pixels). Due to technological reasons, this resolution is
lower than the resolution defined by xt and yt. The time that would be needed for
displaying the hidden pixels in both horizontal and vertical directions is used for
returning the electron beam to the beginning of the next line or for returning it to the
first row of the screen respectively (the row and frame beam flybacks). These seven
values (fp, fv, fh, xt, yt, xd, yd) are variables that depend on the displaying mode
selected. Determining these values in some operating systems is easier than in others.
For example, we can determine them quite simply in Linux, where in the file
/usr/lib/X11/XF86Config (or its equivalent in another X-server) a line like the
following can be found:

ModeLine „1152x900“ 95 1152 1152 1192 1472 900 900 931 939.

We can see that the displaying mode mentioned uses the parameters fp = 95 MHz,
xd = 1152, yd = 900, xt = 1472, yt = 939. The frequencies fh and fv can then be
computed basing on the formulas mentioned above: fh = fp/xt = 64.5 kHz and
fv = fh/yt = 68.7 Hz.

Basing on these values, we can determine the essential formula that defines the
absolute time when the electron beam will be in a pixel (x, y), where 0 ≤ x < xd,
0 ≤ y < yd, and we assume that at the time t = 0 the beam is in the pixel (0, 0). For the
time t(x,y) needed for achieving a pixel (x, y) we can write:

t(x,y) = x/fp + y/fh + n/fv, n ∈ Z.

The term n/fv is related to the periodical screen refresh, the meaning of the
remaining members is obvious. Let us denote a(x,y) the attribute value for a pixel at the
position (x, y). If we want the electron beam (together with the monitor circuits) to
emit a selected signal when displaying an image on the screen, we need to ensure that
the attribute value a(x,y) corresponds with the amplitude of the emitted signal at the

14

time t(x,y). In other words, that a(x,y) ~ s(t(x,y)). To avoid an undesired phase shift of the
emitted signal during the transition to a new frame, the value 1/fv should be an integer
multiple of the period of s(t). In our case, it means that the frequencies fc and ft should
be integer multiples of fv.

In the experiment being described, the colour resolution of 8-bit grey scale was
used and the attribute value was determined by the formula:

a(x,y) = 255/2 + s(t(x,y)) + R,

where R is a smoothing factor with an uniform distribution in the interval <0, 1)
whose purpose is to distribute the noise created by the signal s(t) quantization. The
following parameters were chosen for the transmitted signal: A = 255/4, m = 1,
fc = 2.0 MHz, and two alternative frequencies ft = 300 Hz and ft

’ = 1200 Hz.
The signal described above could have been received by a simple AM receiver that

(according to the authors' statement) when tuned up to the carrier frequency 2.0 MHz,
markedly reproduced both 300 Hz and 1200 Hz tones in the entire lab room and the
neighbouring rooms (unfortunately, no disposition plan has been supplied). This
proves that selected information could have been successfully transmitted in this way.
It is important to note that only a very simple receiver equipped with a basic un-tuned
ferrite antenna was used. It is also very interesting that in the locations where the
signal was starting to fade, getting the receiver closer to the power line the tested
monitor was connected to was of a marked help. This is a good example illustrating
how surprising the holes for leaking of information out of a computer can be.

Prior to trying to reproduce this experiment, we have to take into account that the
radio receivers commonly available nowadays support the AM bandwidths ranging
from 531 to 1602 kHz (MW) and from 153 to 279 kHz (LW) only. This means that
we need to either change the experiment parameters or use a non-standard receiver.
Higher frequencies seem to be better (considering the construction configuration). If
the receiver type used does not limit us, the bandwidth from 3 MHz to 30 MHz
appears to be the best for such an information transmission.

Using the FSK for the transmission of logical levels together with an appropriate
error-control encoding, a transfer rate about 50 bits/s can be reached. To create the
frequency shift of the transmitted signal, we can take an advantage of the same trick
that is used in animations: Two different images for ft and ft

’ are prepared in two
separate banks of the video RAM. By setting one of these areas active, an attacker’s
program can then quickly choose which frequency (i.e. logical level) should be
transmitted.

The transfer rate mentioned above does not seem to be very high at first sight,
however, we need to realize that the attacker will probably be most interested in
values such as keys used for data encryption, etc. For this purpose, the transfer rate is
high enough.

To simplify the experiment described above, we discussed (similarly to the authors
of [7]) the use of a monochromatic signal only. However, most of the displaying
devices used nowadays are colour monitors with RGB screens equipped with three
parallel cathodes emitting the relevant components of the colour signal (red, green,
blue) independently. Additionally, a separate electronic circuit controls quite
independently each of these beams. This means that we could transmit three separate

15

signals sR(t), sG(t), and sB(t) using a colour signal, creating thus three independent
parallel channels for leaking of information from the attacked workstation.

2.2 The Term "Cryptographic Module"

The topic discussed here might seem to be limited to hardware devices only but it is
not. If we discuss the side channels problems generally further on, we will prefer
using the common term cryptographic module as an elementary building unit used to
transform an abstract description of a particular cryptographic scheme into somewhat
“practical”. This module can be realized by means of either software or hardware
resources. Of course, all software needs to be run on a hardware device. This invokes
the question if we should not better always be talking and writing about hardware
modules-devices only. This wouldn't apparently be a very good choice, as our aim is
(besides others) to determine the phase of the process of transition from a purely
abstract description of the implemented cryptoscheme, during that the undesired side
channels (by the definition below) emerge. In other words, we are wondering how
many statements of a purely physical nature we need to add to an originally purely
mathematical model to be able to "notice" emerging side channels also in the formal
description of the examined module. In some cases, all we need to know are the
properties of the software that implements the cryptographic scheme – we say that we
found a side channel in a software module then. In other cases, we also need to add
a physical description of the hardware device the software is run on – we are talking
about a side channel in a hardware module then (the word "device" can be used
instead of "module" here).

Of course, there are types of side channels that can be identified solely in hardware
modules, such as a power side channel. However, there are also many types of side
channels that can be found using the software description only. These types include
many fault side channels. As concrete example of an attack on a software module
using a fault side channel we can mention those ones described here in chapters B, C,
E, and F. Moreover, basing on a general physical properties which are known to be
exhibited by many hardware devices, we can point out a probable susceptibilities to
“purely hardware” side channels by examining solely the software part of the module.
Examples of such reasoning are given in chapter C.

Actually, basing on a recent research observations, we may conclude that the most
suitable technique for designing and analysing cryptographic modules is the one
based on so-called CODESIGN approach [24], [48].

2.3 Formal Definition

Similarly to other cryptanalytic techniques, the side channel attacks were initially
treated as a special kind of “ad-hoc” invention and the efforts for a formal description
and examination of these attacks were not paid much attention to (except for [29]).
Later on, however, these attacks turned out to be forming so interesting category that
it was worth examining them generally. Unfortunately, this does not mean that we
have some exceptionally good theoretical materials available in this area nowadays.

16

Most of the authors are unfortunately too conscious of the value of this kind of
information, so readers, after making a study of a very pretentiously looking material,
sometimes finally realizes that it actually has not brought them anything new.

In this study, we can contribute to the enrichment of the topic discussed by
introducing a classification scheme that will be general enough to cover all the present
techniques and in the same time concrete enough to be useful for working with. The
term side channel appeared for the first time in the article [28], where an informal
definition was given. The following formal basis which (among others) separates the
terms side channel, side channel analysis, side information, side channel attack, and
which also shows how to incorporate the notion of fault attacks into the area of side
channels, was (up to author’s knowledge) for the first time given during the
presentation of the paper [47].

Definition 1 (Side channel). Any undesirable way of information exchange between
a cryptographic module and its neighbourhood is referred to as a side channel (SC).

There are plenty of ways in which a particular side-channel can be realized. Today
researchers work mainly with timing characteristics, power consumption
measurements, and newly also with an electromagnetic emanation. Also challenging
is research in the area of so-called multi-channels which are constructed as a joint
contribution of some different channels [2]. A distinguished kind of side channels are
fault and kleptographic channels which will be discussed later on. Also note, that
there may be output as well as input side channels, where the later ones allow an
attacker to change the behavior of the module by precisely altering the medium which
transmits the particular side channel signal. For example, one may use an
electromagnetic field for such a purpose [45]. But these input side channels are not
studied from the same point of view as the output ones, yet. A possible reason for
doing so is that almost every such an input side channel is actually used to induce an
output side channel which is usually then referred to as a fault side channel (i.e. the
channel induced by computational faults; its own signal is then usually hidden in error
messages normally communicated out from an attacked module). On the other hand,
we may reasonably expect the input side channels to become also more formally
studied in a future research. However, in this thesis, we will focus solely on the output
side channels without further explicit mentioning of this scope.

In the relevant literature, a definition of the term side channel has mostly been left
for its intuitive comprehension so far, which may result in serious misunderstandings.
Please note for example, that in the definition mentioned above, a side channel does
not necessarily disclose sensitive information, which is intuitively implied by most
readers. Such misunderstanding may, for instance, cause serious problems in the area
of power and or electromagnetic side channels. To clarify the problem, let us suppose
we have a cryptographic device on which we have detected a power side channel able
to disclose sensitive information. Let us also suppose we have modified the software
part of the module to prevent it from disclosing this information. This modification
has been performed (as has been usual hitherto) directly on the cryptographic scheme
used, rather than on the hardware construction of the device itself. The danger of the
sensitive information disclosure has thus been warded off. However, the side channel
may persist! Only the information it transmits is useless for the present. Therefore, we
must take into account that the persisting side channel might suddenly strike the

17

module again, when somebody finds another way on how to use the signal coming
from it. So finally, eliminating a particular side channel attack does not necessarily
mean eliminating a particular side channel itself.

If the requirement of sensitiveness of the information transmitted were included in
the side channel definition, the modification mentioned above would simply make the
entire channel invisible. But this would not reflect the reality. As said before, the
channel can persist and we just don't know at the moment how to utilize (e.g. for an
attack) the information it produces. This represents a substantial difference in the
perspective of the problem, as now we are still motivated to think about the possibility
to find a way of processing the information transmitted by the side channel to use it
for an attack.

If we are discussing the problems of a practical use of the information transmitted
by a side channel, it is the right time to define the term side channel analysis (SCA)
now.

Definition 2 (Side channel analysis). A procedure of getting information from a side
channel is referred to as a side channel analysis.

Definition 3 (Side information). The information obtained by a side channel
analysis is referred to as side information.

Please note, we still are not saying anything about whether the side information
distilled has to be sensitive or not. This will allow us to separate the problems of
capturing the information transmitted by a side channel from the problems of utilizing
this information for an attack on the module. This approach sounds useful, since the
tools used for the side channel analysis are mostly represented by commonly used
discrete signal processing techniques, while modified methods of the standard
cryptanalysis are used for attacks. Now, we have finally reached the right moment to
clarify the concept of a side channel attack.

Definition 4 (Side channel attack). A process of using side information to attack
a cryptographic module is referred to as a side channel attack.

Figure 4 summarizes the known types of side channels, side channel analysis
techniques, and their combinations. It indicates how the side channel type names are
combined with the analysis technique names or the side channel attack names. Please
note, that the acronyms for an attack and for the corresponding analysis technique are
the same, simply because the words "attack" and "analysis" have the same initials.
Therefore we need to distinguish between an analysis and an attack based on the
actual context. However, rather than a drawback, this is apprehended as an advantage.
As mentioned before, most of the relevant literature is not based on such general
definitions of concepts and intuitively uses acronyms established formerly (that were,
more or less intuitively again, adopted by the authors of primary relevant paper). The
fact that attack and analysis are not distinguished by the acronyms allows covering
quite many existing papers (whose terms were not adopted based on this general
approach) by the established terminology.

18

2.4 Simple and Differential Analysis

Roughly speaking, simple analysis usually refers to a process of extracting side
information directly by observing the signal coming from a side channel. A good
example of this could be direct reading of DES key bits by observing distinguished
voltage peaks in a power consumption trace of an attacked device (c.f. [31]).
However, with respect to power and or electromagnetic side channels, there are very
few such cases in which the information is encoded in some directly “readable”
format (though such setups usually give surprising results then - [22]). In all the other
cases it is scrambled in some device-proprietary way. Despite this, it doesn’t seem to
be an unsolvable problem to decode these streams, mainly because of the availability
of strong statistical techniques of signals’ theory. Here comes the term differential
analysis which is usually used to refer to a more complicated side information
extraction where some sophisticated statistical tools need to be used (c.f. [30], [31]).
We note that this categorization was primarily created during research on analyses of
power side channels. However, it turns out that adopting it also for a study of other
side channels is highly advisable. This can demonstrate the existence of some closer
relations among the natures of these side channel types that have been being
apprehended as separate problems in most of the research papers so far.

Fig. 4. Basic categorization of side channels and their analyses

Side channel types
• Timing
• Power
• Electromagnetic
• Fault
• Kleptographic

Basic analysis types
• Simple Analysis
• Differential Analysis

Commonly used acronyms
• Timing side channels

o Simple Timing Analysis/Attack - STA
o Differential Timing Analysis/Attack - DTA

• Power side channel
o Simple Power Analysis/Attack - SPA
o Differential Power Analysis/Attack - DPA

• Electromagnetic side channel
o Simple Electromagnetic Analysis/Attack - SEMA
o Differential Electromagnetic Analysis/Attack - DEMA

• Fault side channel
o Simple Fault Analysis/Attack - SFA
o Differential Fault Analysis/Attack – DFA

• Kleptographic side channel
o Kleptographic Analysis/Attack - KA

19

2.5 Special Analyses and their Relations to the Differential Ones

Introducing the term differential analysis may appear as being not enough to grasp all
statistically matured analyses including, for example, the analysis used for promising
template attacks [16]. According to their authors, the attacks seem to be the strongest
form of side channel attack possible in an information theoretic sense. They can break
implementations and countermeasures whose security is dependent on the assumption
that an adversary cannot obtain more than one or a limited number of side channel
samples. At first look, it seems to be advisable to separate the analysis used here from
the differential ones mentioned above. On the other hand, if we assume that term
differential analysis is here to be used for any statistically matured approach to getting
side information from a side channel signal, then there is no problem about that. Since
the terms simple and differential are rather of engineering than mathematical origin,
we will support this viewpoint by a rather heuristic argument. If we look closely at
statistical techniques used for signal detection and information extraction, we see that
they are actually based on a more or less sophisticated hypotheses testing. Here, these
hypotheses are usually derived from assumptions placed on some inside variables
whose secret values an attacker wants to learn. By proving or disproving the
hypotheses the attacker also proves or disproves her assumptions about the secrets.
For example, let the hypothesis be derived from an assumption that the first byte of a
key belongs to the interval <0, 127>. By disproving the hypothesis, however, the
attacker learns that the key byte probably lies in <128, 255>, so its most significant
bit is probably 1. The attacker then continues in such a way until she learns the value
of the whole key. Let us briefly look through common properties of hypotheses
testing. In the heart of such a process, we can usually identify some factor ε whose
value determines whether the particular hypothesis is to be accepted or refused.
Therefore, heuristically speaking, there is a certain measurable distance between
hypothesis acceptation and rejection which can be regarded as a difference between
valid and invalid assumptions about the secret values. So, the process of learning the
secret is intrinsically based on intensive working with such differences, which
satisfies using the term differential analysis.

At least from a practical point of view, we suggest to broadly accept the term
differential analysis together with its spread meaning. Rather then introducing brand
new kinds of side channel analysis, we should then speak about special kinds of
differential analysis. Here is also a place for already existing terms like high-order
differential analysis (e.g. HO-DPA, HO-DEMA) [3], [37], etc. Using the above
mentioned notation, the analysis used in [16] can be then, for example, referred to as
template differential analysis (e.g. TEMPLATE-DPA, TEMPLATE-DEMA, etc.).

2.6 Fault Side Channels

There are two major kinds of fault side channels. The first ones are channels which
are induced by computational faults occurring during cryptographic computation in an
atacked module. These faults can be either random or intentional, caused, for
instance, by a precise voltage manipulation [8]. Having the ability to introduce
computational faults, this kind of attack can be used on almost every kind of

20

cryptographic mechanism and they are regarded as the most effective side channel
attacks at all. The criterion here is the number of required interactions between an
attacker and a cryptographic module being attacked.

We shall also note that although we expect the faulty behavior to be caused mainly
by the effort of an attacker, there can be also errors of the “natural” type. It is as
important to avoid these faults as to defend the module against attackers. This is
because when the error, which causes the leakage of the secret information, happens,
it doesn’t matter what was its reason. We may imagine a worldwide spying agency,
which passively monitors every important system (for example major certification
authorities - CA - used for a certification of user’s public keys) waiting for its faulty
output. When this happens the agency gains the secret information from this particular
system (usually the private key of this CA) and continues spying on the other stations.
If designers of these systems were not aware of FA attacks, then this agency would
sooner or later have private keys of the major part of certification authorities in the
world.

We note that the side channels of this first kind can also be induced by errors in
static ephemeral data used by the module. This data can be, for instance, keys and we
give examples of attacks based on such channels in parts B and C. It follows that
cryptographic modules must be not only protected against computational faults but
they must also properly check the integrity of all static data which are used in
cryptographic computations.

The second kind of fault side channels are those which are induced by sending an
intentionally corrupted input data to the attacked module. For the module, this means
a non-standard situation which must be handled in a special way. Usually the module
has to use an error message to inform the user (the module can hardly know whether
this is an ordinary user or an attacker) that the computation has been stopped due to
some reasons. It turns out, that such error messages can also carry very sensitive
information allowing an attacker to break the cryptosystem implemented by this
module. Despite being sometimes a bit less effective than the attacks based on the
first kind of side channels, these attacks can also pose a significant threat to a whole
system. We give examples of such attacks in parts E and F.

Although we have introduced the notion of simple and differential analyses also for
fault side channels, this was mainly for a purpose of completeness and, probably,
some further research. Today, almost all fault side channels can be analyzed simply
by a simple analysis, since, in fact, the side information is transmitted directly through
output data or error messages. Therefore, these analyses and or attacks belong to the
SFA class and are usually shortly referred to as FA (fault analysis/attack). However, it
may by realized during some future research, that more complicated analysis of this
data is needed and the term DFA may become useful. Actually, one such an example
has been already described in the paper [11].

2.7 Kleptographic Side Channels

A kleptographic channel is a very special side channel type. This is mainly because of
the perspective from which its existence is being viewed. Basically, the kleptographic
channel is often a subliminal channel (see [50], [4]) and a subliminal channel cannot

21

be generally regarded as a side channel. Let us briefly mention the reasons why. The
subliminal channels in cryptography were discovered to transmit an additional, hidden
information in the standard output stream from a cryptographic module. From this
point of view, these channels act in the same way as the subliminal channels used for
transmitting hidden advertisements on TV or in movies (prohibited in most countries).
In relation to the subliminal channels in cryptography, various forms of their use by
intelligence services are speculated, see, for example, their outline in [4]. However,
these channels are always intentionally designed and (from the module designer's
viewpoint) desired, and therefore cannot be generally referred to as side channels.
Having discussed the term subliminal channel, let us go on to another term now. The
term kleptography [54] was adopted in connection with the trend of implementing
cryptographic modules as black boxes used by users that do not (or even must not)
know the internal processes in these modules. In relation with this trend, the problem
of the trustworthiness of such modules for users arose. Users were asking if there was
a possibility of transmitting (in the background of the standard output data) some
hidden information that could be addressed e.g. to an intelligence service. The
intelligence agency then would be able to use such information to decrypt the user
messages, etc. The subliminal channels turned out to be a very good solution for these
purposes. Using subliminal channels for cryptographic purposes is then referred to as
a kleptographic side channel that is, within the meaning of the definition we
introduced previously, a side channel from the user's point of view, as it is probably
an undesired channel for her.

Note that in the case of kleptographic side channels, it does not seem desirable to
introduce the notion of simple and differential analysis over them. Because of their
nature and the way they are built into a cryptographic module, the analysis of their
signal can almost always be referred to as a “very special”, not having apparent
properties of simple nor differential analysis. Maybe, there will be used the term
steganographic analysis in a future.

2.8 A Note on an Information-Theoretic Approach and the Concept of Covert
Channels

In the definitions related to side channels given in this text, we are, in a certain way,
approaching an information-theoretic viewpoint of this problematic. It is well known
in the area of computer security [36], [12] that information theory usually allows us to
obtain strong theoretical results which are, however, hard to achieve in a practice.
Nevertheless, it does not mean that we should not make an effort to get as closer as
possible to an information-theoretic description of at least certain parts of the side
channels area. As an interesting inspiration, we may use the notion of covert
channels, c.f. [42], [41], [12]. This theory studies undesired ways which allow a user
or a group of users to exchange some information with another user or a group of
users via a shared information system [41]. Investigating all such ways is an
important step, for instance, when we are building up an information system designed
to work with sensitive classified information. Certain aspects of the concept are very
similar to the theory of side channels which is circa 20 years younger. The main
difference here is that covert channels are focused on the information flow activated

22

by a user’s will to communicate with somebody else, while an information flow
through side channels is usually activated spontaneously by physical properties of a
cryptographic module. Of course, there are certain overlaps of both concepts. For
instance, covert channels can be used for a creation of kleptographic side channels. In
fact, a subliminal channel mentioned above is just a particular realization of a covert
channel. On the other hand, it does not seem necessary to merge the concepts under
one theory right now (though, we can easily imagine such merging in a future). For
now, it would be enough to seek for some interesting ideas from the longer matured
area of covert channels and try to implement them into the developing area of side
channels.

2.9 Classification by the Level of Control over the Attacked Module

Besides the classification by the type of side channel and its analysis, we will
introduce another classification scheme aimed to distinguish among concrete attacks.
This scheme will classify attacks by the level of control over an attacked module that
an attacker needs for performing a successful attack. We use the following two
independent classifications.

By the control over the computation process, the attacks can be divided to:
Passive – the attacker just monitors the process.
Active – the attacker can alter the computation, e.g. by selecting input parameters.

By the way of accessing the module, the attacks can be divided to:
Non-invasive – no additional protection is trespassed.
Invasive – some of the additional protections (e.g. shielding) are trespassed.

The classification mentioned above will help us better understand under what
circumstances a particular attack type can occur. For example, if we etched the
protective layer of a chip card and connected to the processor's internal bus in order to
monitor the data we would perform a passive invasive attack. However, the
classification is suitable mainly for attacks on concrete physical devices. It is hard to
give an exact attack category when discussing an attack on a cryptographic standard
and or a protocol, since the standard and the protocol can usually be implemented in
many different ways. According to this reason, the classification will not be explicitly
used in the papers presented in this thesis, since these describe mainly the attacks on
cryptographic standards and or protocols.

3. The Terms TAMPERING and TEMPEST

When reading the relevant literature, we often encounter the terms tampering and
tempest. These terms belong in an area which is very close to the side channels but the
relations between these areas have not been precisely defined yet. It is caused by the
fact that the terms tampering and tempest were adopted much sooner than the side
channels theory was created and their definitions are still quite vague.

23

The term tampering mostly refers to an attack involving a physical action on the
device attacked. These actions include simple physical invasion (such as removing
the cover or etching the protective layer of the chip attacked) or, e.g. hampering
power pulses aiming at corrupting the device normal operation ([5], [6], [51]). For
example, the conditions for creating a fault side channel can be ensured in this way.
Using the classification introduced in §2.7, we can say that a proper prevention of
tampering techniques will eliminate all those invasive side channel attacks. However,
this is only a rather small part of the whole area of side channel attacks, and therefore
the protection against tampering say actually very little about the resistance against
side channel attacks.

The term tempest (Terminal Electromagnetic Pulse Escape Safeguard Technique)
is related to the possibility of intercepting parasitic electromagnetic radiation from a
cryptographic device [7]. However, concrete ways of utilizing such information are
studied and discussed not until by the side channels theory again and, up to now, there
seems to be a little effort to reflect research results obtained here back to the tempest
standards [1].

The terms mentioned above are frequently encountered in connection with the
standardization of requirements for the properties of cryptographic modules. As an
example we can mention the FIPS 140 standard (see [21]), namely its latest version
referred to as FIPS 140-2. This document is often used as a base for evaluating
cryptographic modules (both software and hardware). However, as has been sketched
above, high resistance against tampering and a good tempest do not necessarily imply
that all side channels are completely eliminated. This fact is necessary to be taken into
account if we are making a judgement on a cryptographic module's resistance against
the side channel attacks, based on whether the module is certified as compliant with
FIPS 140 or not. Even the authors of the standard themselves are aware of this
problem and point this unresolved question out.

4. Conclusion

The discovery of side channels is definitely one of the most significant events in the
recent cryptanalysis. In the rapidly nascent side channels general theory, it becomes
obvious that studying only an abstract mathematical description of a particular
(standardized) cryptosystem when evaluating security of a whole cryptographic
module is insufficient any more. This description must always be enhanced with some
description of a physical nature to get the abstract concept closer to the actual
environment in which the examined module is to be operated. It also becomes
obvious that the cryptology is a very multidisciplinary science that combines a very
wide range of purely mathematical disciplines together with certain knowledge about
physics, computer science, and electrical engineering. Briefly speaking, the
cryptology itself balances on the edge between mathematics and physics. If we
exaggerate a little bit, we can rather talk about sort of physical mathematics here. We
borrowed the term mathematical physics here and reversed the order of the disciplines
names. Even though we would not like to slip into profound philosophical thoughts,
we can substantiate the use of this term by the fact that, while mathematical physics

24

accents whether the theories applied describe the physical reality precisely enough, in
cryptography (i.e. physical mathematics) we need to take care of whether the resulting
cryptographic module implementation truly corresponds with its mathematical
description. Both of the disciplines thus seem to be balancing on the edge between the
mathematics and physics, but originally in the reverse direction to each other.

The side channels theory also significantly influences some of the well-established
cryptographic principles. As one example for all, let us mention the concept of a
perfect secrecy (also known as an absolute security) [36]. Informally speaking, this
term refers to cryptographic constructions for which the possibility of cryptoanalysis
can be totally eliminated regardless of the attacker's computing power. Based on the
information theory, we can show in these cases that the attacker do not have enough
information to be able to solve the cryptoanalysis task (e.g. find the plaintext for
a ciphertext) correctly. From this point of view, the Vernam's Cipher has become
renowned which is absolutely secure if applied properly. However, if we do not
consider side channels effect when evaluating a system, the concept of the perfect
secrecy is not very beneficial for us. Information that we suppose not to be available
to an attacker can actually leak out unnoticed from one of the side channels. Of
course, this does not mean that the perfect secrecy term will necessarily die out. What
it means is that constructing the proof of absolute security always has to be based on
such a description of the evaluated cryptosystem, which corresponds with the physical
reality (i.e. includes an accurate description of threatening side channels).

In the end, let us summarize general methodical procedures we should follow when
designing cryptographic modules to make them resistant to threats of attacks based on
side channels. First, we should aim at identifying all the side channels possible. Of
course, we should try to eliminate these side channels then, so that they completely
disappear if possible. As this is not always possible (see [18]), we need to apply
corrections directly in the design of the cryptosystems implemented then. Concrete
examples of such corrections will be mentioned throughout this study according to
concrete attacks presented further on. We should comment here the incorrect but
somehow still surviving opinion that a protection against side channels is always of
a purely physical nature. If we accepted this opinion, we would lose a big part of what
we are trying to build in the side channels general theory. We are trying to make us
not only "also realize" the physical attributes of the examined module but also
combine their descriptions with the abstract mathematical models of the
cryptographic schemes used. This should form a complex theory based on which all
that we need to know about the module can be deduced and proven. The type and
placement of countermeasures designed to improve the module security are then not
decided based on intuitive assumptions (e.g. hardware countermeasures against
hardware side channels). The only decisive criterion is the countermeasure efficiency.
Very efficient countermeasures can be (maybe a bit surprisingly) achieved by making
corrections to the mathematical descriptions of cryptographic schemes. Of course, this
definitely cannot be treated as a dogma either.

The general conclusion of this part should be that the security of a particular
cryptographic module does not depend only on the cryptographic standards employed.
It is also a question of the way in which these standards are implemented as well as of
the environment in which the module is to be used [24].

25

References

1. Agrawal, D., Archambeault, B., Rao, J.-R., and Rohatgi P.: The EM Side-Channel(s),
in Proc. of CHES 2002, pp. 29-45, 2002

2. Agrawal, D., Rao, J.-R., and Rohatgi, P.: Multi-channel Attacks, in Proc. of CHES
2003, pp. 2-16, 2003

3. Akkar, M.-L., Bevan, R., Dischamp, P., and Moyart, D.: Power Analysis, What Is
Now Possible..., in Proc. of ASIACRYPT 2000, pp. 489-502, 2000

4. Anderson, R.: Security Engineering, John Wiley & Sons, Inc., 2001
5. Anderson, R. and Kuhn, M.: Tamper Resistance – a Cautionary Note, in Proc. of 2nd

USENIX Workshop On Electronic Commerce, pp. 1-11, 1996
6. Anderson, R. and Kuhn, M.: Low Cost Attacks on Tamper Resistant Devices, in Proc.

of Security Protocols ’97, pp. 125-136, 1997
7. Anderson, R. and Kuhn, M.: Soft Tempest: Hidden Data Transmission Using

Electromagnetic Emanations, in Proc. of Information Hiding ’98, pp. 124-142, 1998
8. Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., and Seifert, J.-P.: Fault Attacks on

RSA with CRT: Concrete Results and Practical Countermeasures, in Proc. of CHES
2002, pp. 260-275, 2002

9. Bao, F., Deng, R.-H., Han, Y., Jeng, A., Narasimhalu, A.-D., and Ngair, T.: Breaking
Public Key Cryptosystems on Tamper Resistant Devices in the Presence of Transient
Faults, in Proc. of Security Protocols ’97, pp. 115-124, 1997

10. Bellare, M. and Rogaway, P.: The Exact Security of Digital Signatures – How to Sign
with RSA and Rabin, in Proc. of EUROCRYPT ’96, pp. 399-416, 1996

11. Biham, E. and Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems,
in Proc. of CRYPTO ’97, pp. 513-525, 1997

12. Bishop, M.: Computer Security – Art and Science, Addison-Wesley, 2003
13. Boneh, D.: Twenty Years of Attacks on the RSA Cryptosystems, Notices of the

American Mathematical Society, vol. 46, no. 2, pp. 203-213, 1999, available at
http://crypto.stanford.edu/~dabo/pubs.html

14. Boneh, D., DeMillo, R.-A., and Lipton, R.-J.: On the Importance of Checking
Cryptographic Protocols for Faults, in Proc. of EUROCRYPT ’97, pp. 37-51, 1997

15. Chari, S., Jutla, C.-S., Rao, J.-R., and Rohatgi, P.: Towards Sound Approaches to
Counteract Power-Analysis Attacks, in Proc. of CRYPTO ’99, pp. 398-411, 1999

16. Chari, S., Rao, J.-R., and Rohatgi, P.: Template Attacks, in Proc. of CHES 2002, pp.
13-28, 2002

17. Coron, J.-S. and Goubin, L.: On Boolean and Arithmetic Masking against
Differential Power Analysis, in Proc. of CHES 2000, pp. 231-237, 2000

18. Clavier, C., Coron, J.-S., and Dabbous, N.: Differential Power Analysis in the
Presence of Hardware Countermeasures, in Proc. of CHES 2000, pp. 253-263, 2000

19. Dhem, J.-F., Koeune, F., Leroux, P.-A., Mestré, P., and Quisquater, J.-J. and
Willems, J. - L.: A Practical Implementation of the Timing Attack, Technical Report
CG-1998/1, 1998

20. van Eck, W.: Electromagnetic Radiation from Video Display Units: an
Eavesdropping Risk?, Computers & Security vol. 4, pp. 269-286, 1985

21. FIPS PUB 140-2: Security Requirements for Cryptographic Modules, National
Institute of Standards and Technology, Issued May 25 2001,
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

22. Fouque, P.-A., Martinet, G., and Poupard, G.: Attacking Unbalanced RSA-CRT Using
SPA, in Proc. of CHES 2003, pp. 254-268, 2003

23. Goubin, L. and Patarin, J.: DES and differential power analysis, in Proc. of
CHES ’99, pp. 158-172, 1999

26

24. Joye, M., Koeune, F., Preneel, B., Rohatgi, P., Seifert, J.-P., and Walter, C.: Are
software and hardware counter-measures winning the war against side-channel
leakage?, panel session at CHES 2003, 2003

25. Joye, M., Koeune, F., and Quisquater, J.-J.: Further results on Chinese
Remaindering, Technical Report GC-1997/1, 1997

26. Joy, M., Lenstra, A.-K., and Quisquater, J.-J.: Chinese Remaindering Based
Cryptosystems in the Presence of Faults, Journal of Cryptology, Volume 12, Number
4, pp. 241-245, Autumn 1999

27. Joye, M. and Quisquater, J.-J.: Faulty RSA Encryption, Technical Report CG-1997/8,
1997

28. Kelsey, J., Schneier, B., Wagner, D., and Hall, C.: Side Channel Cryptanalysis of
Product Ciphers, in Proc. of ESORICS ’98, pp. 97-110, 1998

29. Kocher, P.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems, in Proc. of CRYPTO ’96, pp. 104-113, 1996

30. Kocher, P., Jaffe, J., and Jun, B.: Introduction to Differential Power Analysis and
Related Attacks, Technical Report, 1998, http://www.cryptography.com/dpa/technical

31. Kocher, P., Jaffe, J., and Jun, B.: Differential Power Analysis, in Proc. of Crypto ’99,
pp. 388-397, 1999

32. Kömmerling, O. and Kuhn, M.: Design Principles for Tamper-Resistant Smartcard
Processors, in Proc. of USENIX Workshop on Smartcard Technology, pp. 9-20,
1999

33. Lenstra, A.-K.: Memo on RSA Signature Generation in the Presence of Faults,
manuscript, September 28 1996, partially published in [26]

34. Manger, J.: A Chosen Ciphertext Attack On RSA Optimal Asymmetric Encryption
Padding (OAEP) as Standardized In PKCS #1, in Proc. of CRYPTO 2001, August
2001

35. Mayer-Sommer, R.: Smartly Analyzing the Simplicity and the Power of Simple Power
Analysis on Smartcards, in Proc. of CHES 2000, pp. 78-92, 2000

36. Menezes, A.-J., van Oorschot, P.-C., and Vanstone, S.-A.: Handbook of Applied
Cryptography, CRC Press, 1996, online at http://www.cacr.math.uwaterloo.ca/hac/

37. Messerges, T.-S.: Using Second-Order Power Analysis to Attack DPA Resistant
Software, in Proc. of CHES ‘00, pp. 238-251, 2000

38. Messerges, T.-S.: Securing the AES Finalists Against Power Analysis Attacks, in
Proc. of FSE 2000, pp. 150-164, 2000

39. Messegers, T.-S., Dabbish, E.-A., and Sloan, R.-H.: Investigations of Power Analysis
Attacks on Smartcards, in Proc. of USENIX Workshop on Smartcard Technology,
pp. 151-161, 1999

40. Messerges, T.-S., Dabbish, E.-A., and Sloan, R.-H.: Power Analysis Attacks of
Modular Exponentiation in Smartcards, in Proc. of CHES ’99, pp. 144-157, 1999

41. Millen, J.: Covert Channel Capacity, in. Proc. of 1987 EEE Symposium on Research
in Security and Privacy, pp. 60-65, 1987

42. Millen, J.: 20 Years of Covert Channel Modeling and Analysis, in Proc. of the 1999
IEEE Symposium on Security and Privacy, pp. 113-114, 1999

43. Muir, J.-A.: Techniques of Side Channel Cryptanalysis, A thesis presented to the
University of Waterloo, Canada, 2001,
http://www.math.uwaterloo.ca/~jamuir/sidechannel.htm

44. PKCS#1 v2.1: RSA Cryptography Standard, RSA Laboratories, DRAFT2 – January 5
2001, http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1/

45. Quisquater, J.-J. and Samyde, D.: Eddy current for magnetic analysis with active
sensor, In Proc. of Esmart 2002, 3rd edition, 2002

46. Rivest, R.-L., Shamir, A., and Adleman L.: A method for obtaining digital signatures
and public-key cryptosystems, Communications of the ACM, pp. 120-126, 1978

27

47. Rosa, T.: Future Cryptography: Standards are not Enough, in Proc. of Security and
Protection of Information 2001, Military Academy in Brno, pp. 237-245, NATO-
IDET, Brno, 9. - 11. of May, 2001

48. Schaumont, P. and Verbauwhede, I.: Domain-Specific Codesign for Embedded
Security, Computer, April 2003, Vol. 36, No. 4, pp. 68-74, IEEE Computer Society,
2003

49. Schindler, W.: A Timing Attack against RSA with the Chinese Remainder Theorem, in
Proc. of CHES 2000, pp. 109-124, 2000

50. Simons, G.-J.,: The History of Subliminal Channels, IEEE Journal of Selected Areas
in Communications, vol. 16, n. 4, pp. 452-462, April 1998

51. Skorobogatov, S.: Copy Protection in Modern Microcontrollers, Technical Report,
2000, http://www.cl.cam.ac.uk/~sps32/mcu_lock.html

52. Smulders, P.: The Threat of Information Theft by Reception of Electromagnetic
Radiation from RS-232 Cables, Computers & Security vol. 9, pp. 53-58, 1990

53. Stinson, D., R.: Cryptography – Theory and Practice, CRC Press, 1995
54. Young, A. and Yung, M.: Kleptography: Using Cryptography Against Cryptography,

in Proc. of EUROCRYPT ’97, pp. 62-74, 1997

28

B. Attack on Private Signature Keys of the OpenPGP
format, PGPTM programs and other applications

compatible with OpenPGP*

1. Introduction

The OpenPGP format is defined in the document [3] since the year of 1998. Its
objective was to publish all necessary information about the OpenPGP format so that
various interoperable applications could be created on its basis. It describes the
massage formats (data structures) and a manner of how they are to be created. In this
chapter, we show a serious vulnerability of the OpenPGP format which consists in
insufficient security of integrity of both public and private parts of signature keys of
DSA and RSA algorithms. We show that this vulnerability may be used to reveal the
private signature keys.

In order to protect the private key, its value is stored in the so-called private
keyring (file) secring.skr in an encrypted form. A strong symmetric cipher (e.g.
AES, CAST5, IDEA) with sufficiently long key is usually selected for this purpose by
the user. The key is derived from a secret access password (referred to as a
passphrase) which is known only by the user. In this study, we show that if an
attacker has an access to this file (or a record), she may obtain the user’s private
signature key without the need to know her passphrase or without having to attack on
it. The attack consists in a special modification of parameters of the signature
algorithm and obtaining of a signature of any file (e.g. e-mail message) by such a
modified signature key. We show that the attacker is able to compute the private
signature key based on this procedure. As the corrupted record or file
(secring.skr) can be then restored back to its original condition, this intrusion is
very dangerous. Private keys transferred in encrypted form on floppy disks or over the
network are endangered in the same way. The attack was practically tested on the
PGPTM v. 7.0.3† program with a combination of AES and DH/DSS algorithms.
Revealed private signature key of the DSA algorithm was the result of the attack.

We also propose certain security and cryptographic measures for correction of the
OpenPGP format as well as changes in the PGPTM program. All other applications
which are compatible with OpenPGP format shall undertake a detailed revision. This
applies for instance to the GNU Privacy Guard and other applications specified on the
list of applications compatible with OpenPGP, which is available at
http://www.pgpi.org/products.

* An edited version of the paper: Klíma, V. and Rosa, T.: Attack on Private Signature Keys of

the OpenPGP format, PGP (TM) Programs and Other Applications Compatible with
OpenPGP, IACR ePrint archive 2002/076, version 1, March, 2001.

† It was the latest version of the PGPTM program at the time of writing the original paper.

29

The following text is organized as follows: First we recall a definition of the
signature scheme of DSA and the storage format of the private keys according to
OpenPGP [3]. Then we describe an idea of the attack on the private signature DSA
key and the specific procedure of the attack as we performed it in the PGPTM program.
Furthermore, we describe an idea of the attack on the signature key of RSA, stored
according to the format OpenPGP. Then we specify the basic temporary measures for
protection of the private keys in the PGPTM program and proposals for revision of the
OpenPGP format. In appendices, we present the technical details of the attacks. The
ideas of fault attacks presented in this work and [9] were later on employed in [4]
where it has been shown that they apply to the widely used standard PKCS#11 as
well. Some of them were also independently verified in [1] and two years later re-
discovered and slightly extended in [11].

2. DSA Signature Algorithm

For the purpose of this article we will briefly recap the procedure of creation of the
key pair and the signature using 1024bit DSA algorithm (see, for instance, [7], page
452) and the signature verification procedure and introduce the necessary variables.

2.1 Creation of a Key Pair

Let us refer to SHA-1 [7] hash function as h. Each user generates the private and
public key together with public parameters as follows:

1. Select 160bit prime number q, such that 2159 < q < 2160.
2. Select 1024bit prime number p, such that q (p-1) and 21023 < p < 21024.
3. Select generator g of the cyclic subgroup of order q in Zp

* (that means a
random element α ∈ Zp

* will be selected, such that g = α(p-1)/q mod p and g ≠
1, otherwise another α is selected).

4. Select a random number x, such that 1 ≤ x ≤ q-1.
5. Compute y = gx mod p.
6. The public key is y, the public parameters are (p, q, g), the private key is x.

2.2 Creation of a Digital Signature

When creating the signature of the message m (actually its hash value h(m)) the user
uses her private key x and public parameters (p, q, g) according to the following
procedure:

1. Select a random secret number k, 0 < k < q.
2. Calculate r = (gk mod p) mod q, check if r > 0, otherwise go to (1).
3. Calculate kInv = k-1 mod q.
4. Calculate s = [kInv * (h(m) + x*r)] mod q, check if s > 0, otherwise go to (1).
5. Digital signature of the message m is the pair (r, s).

30

Let us note that r, s, and q are generally 160bit numbers, whereas p, g, and y are
1024bit numbers.

2.3 Verification of a Digital Signature

For verification of the digital signature (r, s) of the message m, we use signer’s public
key y together with public parameters (p, q, g) according to the following procedure:

1. Verify that 0 < r, s < q. In the opposite case the signature is invalid.
2. Calculate sInv = s-1 mod q and the hash value h(m).
3. Calculate u1 = sInv * h(m) mod q, u2 = sInv * r mod q.
4. Calculate v = (gu1 * yu2 mod p) mod q.
5. The signature is valid if and only if v = r.

3. Description of the Secret Key Packet Data Structure for Storage
of the Private Signature Key According to OpenPGP

We describe here the data structure (so-called Tag) Secret Key Packet in
which the primary signature key (RSA or DSA) is stored. There are two versions of
this format. Version 3 applies only for RSA keys, version 4 may include both DSA
and RSA keys. We will describe a side channel attack on the RSA signature key using
both format versions and on the DSA signature key using version 4 of the format. The
version 4 of this format is used also by the program PGPTM 7.0.3 which prefers DSA
to RSA. Specifically, we will therefore work with RSA keys in the version 3 format
and with DSA keys in the version 4 in practice. Let us note that the versions 3 and 4
are different in an encryption method of the private data and therefore also the attacks
on both algorithms are different. In both versions of the format, the structure of the
Secret Key Packet contains in the beginning the data from the structure of the
Public Key Packet, concerning the public key, and then the data concerning the
private key. Description and the content of the individual items are illustrated in Table
1 for the DSA algorithm and Table 2 for the RSA algorithm. Regarding the content of
the table, let us recall that the MPI format (multi-precision integer) contains prefix
and then the actual (big) integer number in the BIG ENDIAN encoding. The prefix
forms two octets in BIG ENDIAN and indicates the number of valid bits of the
subsequent number [3].

Table 1. Content of the Secret Key Packet structure for 1024bit algorithm DSA

1 octet indicating the version number
4 octets indicating the time, when the key was created
1 octet indicating the algorithm for creation of a digital
signature. Then the fields (numbers in MPI format) follow
containing public parameters and public key for 1024bit
DSA algorithm:

Public prime number p (2 + 128 octets long in figure 1)

31

prime number q (2 + 20 octets long in figure 1)
number g (2 + 128 octets long in figure 1)

Key
Packet

user’s public key y (2 + 128 octets long in figure 1)
1 octet (string-to-key usage), indicating whether and how the private
key is encrypted. The value 0xFF is preferred indicating that the
following three optional items are completed.
[Optional] In case that string-to-key usage is 0xFF, there is 1 octet
here, identifying a symmetrical encryption algorithm for protection of
the private key.
[Optional] If the string-to-key usage is 0xFF, there is a "string-to-key
specifier" which says how the password of the user is processed for a
symmetrical key. The value 0x03 is preferred indicating the so-called
iterated and salted string-to-key identifier. Typically the following data
is stored here with the following meaning:

1 octet: 0x03 (iterated and salted string-to-key identifier)
1 octet: identifier of the hash algorithm (for SHA-1 it is 0x02)
8 octets: salt (random data which are hashed together with the
user’s passphrase to diversify the symmetrical key derived)
1 octet: the number of hashed octets of the data (the so-called
"count").

[Optional] If the private key is encrypted, the initialization vector (IV)
is stored here. This is a random data in the length of the cipher block
(8 octets for 64bit block ciphers, 16 octets for AES algorithm).

Area of
publicly
available

data

Algorithmically dependent numbers in the format MPI. For DSA, only
the private exponent x is stored here:

2 octets, prefix of the number x (encrypted)
20 octets, the x value (encrypted)
2 octets, checksum as an arithmetic sum of 22 previous octets in
plaintext modulo 65536 (encrypted).

Area of
Sensitive

Data

Now, let us stop at files of secring.skr type in programs of PGPTM where the
PGPTM program saves the Secret Key Packet structure. Apart from the
Secret Key Packet field, this file usually stores several other records such as:

• UserID Packet (contains an identifier of the user, i.e. its name and e-
mail address),

• Signature Packet (contains time of signature, key expiration and so
on),

• Secret Subkey Packet (contains similar data such as Secret Key
Packet, but this time about asymmetric key and algorithm for encryption
of the data),

• another Signature Packet (contains the data such as, for instance, a
time of signature of this key by the signature key, amount/size of trust to it
and so on).

These other records, however, do not contain any check of integrity of the whole
Secret Key Packet record. This opens a door for successful attacks on the
Secret Key Packet.

32

4. Attack on DSA Signature Algorithm

Let us notice that the integrity of the Public Key Packet field is not visibly
secured anywhere in the format of OpenPGP, and as it became apparent by carrying
out a practical attack, not even in PGPTM programs. Nevertheless, when creating the
digital signature it is public parameters of this field that are just utilized (in the event
of PGPTM program, the Secret Key Packet is stored specifically in
secring.skr file). These parameters could be read from the record of the public
key (the file pubring.pkr), but it is logical that if the record of the private key is
open, they will be read from here. In the record of Secret Key Packet the value
of the private signature key is protected, but the mistake is that here the value of
public parameters or public key is not protected anyhow. Specifically in the case of
DSA, the numbers p, q, g, and y are unprotected of which we will use only p, g for the
attack.

4.1 Attack Description

The main idea of the attack on DSA consists in the following steps. The attacker will:
1. prepare special numbers referred to as PGPrime and PGGenerator,
2. obtain the record of Secret Key Packet of the given user and replace

p, g values stored in the structure Public Key Packet inside the
Secret Key Packet by the values p´= PGPrime and g´= PGGenerator,

3. capture the first not enciphered message or the file which the user signed
with such false parameters and will keep its signature,

4. calculate the private key of the user (the x value) on the basis of the message
obtained and its signature,

5. return the p, g values to the original Secret Key Packet.

The procedure of the attack on the DSA algorithm will be now described in detail
and specifically as we carried it out utilizing the PGPTM 7.0.3. program. Examples and
the procedure are specified for 1024 bit DSA. In the text below, we will mark the
foisted values together with the values computed on the basis of these false values
with an apostrophe.

1st step
We selected the constant prime number PGPrime, such that

1. PGPrime has 159 bits, so the condition PGPrime < q is trivially fulfilled,
2. PGPrime = t*2s +1, where 2s is as big as possible and t is a small prime

number.

Specifically, we selected s = 151 and t = 167, i.e. PGPrime has the following
binary format 10100111000....(150 zeros)....0001. Hexadecimally, it is written as
0x5380 0000 0000 0000 0000 0000 0000 0000 0000 0001.

Then we selected the constant number PGGenerator, such that
1. 1 < PGGenerator < PGPrime – 1,
2. PGGenerator is a generator of the multiplicative group Z*

PGPrime.

33

Specifically, we chose PGGenerator = 0x31AC8529 1FF814E6 25E4B88C
8C5047A7 DB2F0E45 and verified that (PGGenerator)(PGPrime-1)/2 mod PGPrime ≠ 1
and (PGGenerator)(PGPrime - 1)/t mod PGPrime ≠ 1.

2nd step
Now, we took the file secring.skr and in its record of the Secret Key
Packet we changed the values (p, g) to the values (p´ = PGPrime, g´ =
PGGenerator). We then adjusted lengths of these numbers in the MPI format and cut
short the overall length of the Secret Key Packet (values in the beginning of
the record secring.skr) in such a way, that it correspond to shorter false values p´
and g´. The situation is illustrated in figures 1 and 2.

3rd step
Foisting such faked values on the user being attacked, we waited till the user signs

any file known to us (message m). We then captured its signature - values (r´, s´).
Now, let us denote k the randomly chosen number, unknown to us, which the user
program chose for the signature captured (c.f. the description of DSA in §2 above).

4th step
In this step, we calculated the value of the private key x of the given user on the

basis of values p´, g´, m, r´, and s´. From the definition of the signature value (r´, s´) it
holds that

(1) r´ = [(g´)k mod p´] mod q, where according to the choice p´ < q we get
(1a) r´ = (g´)k mod p´,
(2) s´ = ([k-1 mod q] * [h(m) + x*r´]) mod q, thus
(2a) x = ([s´* k - h(m)] * [(r´)-1 mod q]) mod q.

The key issue is now that we are able to calculate the unknown randomly chosen
number k thanks to the choice of PGPrime and PGGenerator. The prime number p´=
PGPrime was selected in such a way, that the equation (1a), i.e. the problem of the
discrete logarithm in Zp´

*, is easy to solve. The specific procedure of calculation of the
discrete logarithm in this special group is specified separately in Appendix 1. On the
basis of this procedure, we calculated the value of k from the equation (1a) and then
computed the value of x from the equation (2a).

We checked the correctness of x according to the relationship y = gx mod p with
original values y, g, p. The private key value is therefore calculated and its validity is
verified against the value of the public key.

5th step
To the user, we returned her original file secring.skr.

4.2 Practical Implementation of the Attack

The attack was applied to the PGPTM program v. 7.0.3 for Windows 95/98/NT/2000.
From the nature of the attack and the data formats used, it follows that this attack
should be also successful on other platforms. The procedure of the attack was carried
out precisely according to the aforesaid description. The adjustment of parameters
was carried out in the field Secret Key Packet in the secring.skr file,

34

where the private signature key is stored as we can see in figures 1 and 2. On the first
figure, original values are indicated and the second one shows false values.

9501D7043A8D29DF110400F2E02A396A14E137085DA859B3569AF4027EA37

9682F46780920B72127C88787DDC1BFF9FDB59E564B741FD5FC98856679F1C04
1CB71895CB6975E7FE6E15A6D4B70514560E11A25637F3FBA35E89E5F1FA272A
2707F4865EA106EE402973D4969A276DA4911005B968B81548621CEBBB5771A3
5C5A785F7F480E47277D2BAB500A0FF04303152BD2A9AD963E063A3FE34A8A55
34F3F0400CD8580F20AA821A6D2FF5255DFD02E4F4C8D8DA3731517476BEE096
F7B104B01B6CE1C4DE586BAEA30D82B50DCB3F0D20B0F0D07D8384C09F12CBF0
79887CEB696E822D753A48584F2BC573C84E8490AB310FDBCC40EAEBCD05973B
3F2A1A479FFE0E4B63026E066B6E936F1B2B7F1C91C65CBA0F27B4C0D22254BB
C852DEDE10400AC756BB6EB82313A0FE91F47A36D1425D89FB124CD0ACBA082E
8B2C2B048BE92C5CE7A5FAA5AF317DCC086150B98AB504C0DA6BF1D87FAB73C8
F8D0FC821BD8902CA6927338CF0D682E7C9E3E8D89A3D00D53224C301E6C932A
DA7562FA15E9027E105F803043D4CBC08807A8FB71FEF9B27EE6A0722C4BF601
D032CC59F6FE4FF09030213CF38106B7BCA3F603F59437C3860B98DA3A1A3F02
A4D2754075B494CAC156E38E1282705FB0BBD68940A1653457E161AB00187B42
8566C617374696D696C204B6C696D612C20445353203C762E6B6C696D6140646
563726F732E637A3EB00303FFFF89005A04101102001A05023A8D29DF050901E
13380040B090807021901051B03000000000A09109B89D5F084A0EAD7A35C009
F5B643D5D2C37F4B2CFC9F399873B747CB3FBFE6800A0A8FE0A2498E332586F6
BED3BB88F278B0C5CF079B001679D014E043A8D2A78100400C904D0246F86223
52D6A60F67F1B4AAA4E94562BB00595A67DDB853AEF3F421CEE2D5FCD5AF1818
0872FE50296009381590104609679274CC92770C6DEBCF391A39B92270D71E7C
5EBEC66B3A3BF1BDF5217E9F609F5D011B9D648A930998C61CD462F3BAAAFD91
6FDBFFFAA01FCBD2E42F1BC5C406BB0763B3D48302408413900020203FE2B39B
802893DE670D745D2AE4DF802BDA707E829B7B0FF7438FFB88EAB76189AA90A1
43FB11C1DCC5149046C913AB114D9775563BA0103E65C951D6AC9199D52818BD
2B8A8BF07A6E9F8C242811FF9522EE168207F1EC5D49B441C63D473F7C83D89C
3B6F43A3D80B1B38F7195DE45A55807207159A70CA883493532CD4D8802FF090
30221D3B8EC1276C0D3601B745E982D01201DA87DB47FD3B9C8CDD8F6BC857F5
6B6F4370AB8A94C7A4E528D209A80B365A416AF80E1198BAC1AE4175A0F90B00
18789005204181102001205023A8D2A78050901E13380051B0C000000000A091
09B89D5F084A0EAD7CD04009F7056BA18F5907E36E4ED9A79B4160AE8C6338D9
8009B043443B6665E860719768B49382DEC95FD7F96BBB00167

Fig. 1. File secring.skr hexadecimally, original values p, g are indicated with their lengths
together with the total length of the record

9500FF043A8D29DF11009F538000000000000000000000000000000000000
100A0FF04303152BD2A9AD963E063A3FE34A8A5534F3F009E31AC85291FF814E
625E4B88C8C5047A7DB2F0E450400AC756BB6EB82313A0FE91F47A36D1425D89
FB124CD0ACBA082E8B2C2B048BE92C5CE7A5FAA5AF317DCC086150B98AB504C0
DA6BF1D87FAB73C8F8D0FC821BD8902CA6927338CF0D682E7C9E3E8D89A3D00D
53224C301E6C932ADA7562FA15E9027E105F803043D4CBC08807A8FB71FEF9B2
7EE6A0722C4BF601D032CC59F6FE4FF09030213CF38106B7BCA3F603F59437C3
860B98DA3A1A3F02A4D2754075B494CAC156E38E1282705FB0BBD68940A16534
57E161AB00187B428566C617374696D696C204B6C696D612C20445353203C762
E6B6C696D6140646563726F732E637A3EB00303FFFF89005A04101102001A050
23A8D29DF050901E13380040B090807021901051B03000000000A09109B89D5F
084A0EAD7A35C009F5B643D5D2C37F4B2CFC9F399873B747CB3FBFE6800A0A8F
E0A2498E332586F6BED3BB88F278B0C5CF079B001679D014E043A8D2A7810040

35

0C904D0246F8622352D6A60F67F1B4AAA4E94562BB00595A67DDB853AEF3F421
CEE2D5FCD5AF18180872FE50296009381590104609679274CC92770C6DEBCF39
1A39B92270D71E7C5EBEC66B3A3BF1BDF5217E9F609F5D011B9D648A930998C6
1CD462F3BAAAFD916FDBFFFAA01FCBD2E42F1BC5C406BB0763B3D48302408413
900020203FE2B39B802893DE670D745D2AE4DF802BDA707E829B7B0FF7438FFB
88EAB76189AA90A143FB11C1DCC5149046C913AB114D9775563BA0103E65C951
D6AC9199D52818BD2B8A8BF07A6E9F8C242811FF9522EE168207F1EC5D49B441
C63D473F7C83D89C3B6F43A3D80B1B38F7195DE45A55807207159A70CA883493
532CD4D8802FF09030221D3B8EC1276C0D3601B745E982D01201DA87DB47FD3B
9C8CDD8F6BC857F56B6F4370AB8A94C7A4E528D209A80B365A416AF80E1198BA
C1AE4175A0F90B0018789005204181102001205023A8D2A78050901E13380051
B0C000000000A09109B89D5F084A0EAD7CD04009F7056BA18F5907E36E4ED9A7
9B4160AE8C6338D98009B043443B6665E860719768B49382DEC95FD7F96BBB00
167

Fig. 2. File secring.skr after intrusion, modified values p´, g´ are indicated with their
lengths together with the total length of the record

5. Attack on RSA Signature Algorithm in OpenPGP

5.1 Brief Description of RSA Signature Transformation

Here, we briefly recall the definition of RSA signature algorithm (see for instance [8])
and introduce common labeling of its variables. Let us refer to RSA modulus as n and
let n = p*q, where p, q are prime numbers. Let us denote public exponent e and
private exponent d. Then let us define pInv = p-1 mod q. The pair (n, e) will be
referred to as a public key. For the needs of OpenPGP format, a private key is
considered to be represented by the quadruple (d, p, q, pInv). Signature of the
message m is created as the value s = md mod n, where it is assumed that the message
m has been already formatted in advance in a certain manner. The signature s of the
formatted message m is valid if and only if m = se mod n.

5.2 Description of Attack on the RSA Signature Key

We anticipate that the following thoughts can be applied to a signature key of RSA
algorithm implemented according to the general OpenPGP format. However, the
PGPTM programs have extended built-in mechanisms for integrity check of this key
prior to its use for a signature, which successfully thwarts the attacks. In this case, we
therefore attack only on the OpenPGP format.

As with DSA, the private key is stored in the Secret Key Packet structure.
At the time of writing this analysis, versions 3 and 4 of this format are used which
differ in how the private data is encrypted. Both versions of Secret Key Packet
contain in the beginning the data on the public key (in the Public Key Packet

36

structure) and then the data of the private key follows. The structure Public Key
Packet has also two versions of the format (3 and 4), but these differ only by the
time field of data (c.f. Table 2). Therefore, let us describe only the content of the
newer version 4 (see Table 2).

The Public Key Packet structure contains:

1. 1 octet version number
2. 4 octet number indicating time, when the key was created
3. 1 octet identifying asymmetric algorithm (RSA here) belonging to this key
4. A sequence of MPI integers containing a public key. Here it is :

- number n (RSA modulus) in MPI format,
- number e (RSA public exponent) in MPI format.

After the Public Key Packet, other data of Secret Key Packet

follows, while the data of the private key is already encrypted as Table 2 shows. In
the case of RSA, the following data is concerned:

- private exponent d,
- prime number p,
- prime number q, satisfying p < q,
- pInv (= p-1 mod q),
- two octets of the checksum.

Table 2. Content of the structure Secret Key Packet version 3 and 4 for RSA algorithm
(modulus 1024 bits)

1 octet indicating the version number
4 octets indicating the time when the key was
created

(in version 3 of Public Key Packet,
2 octets more indicating the number of
days of the key validity)

1 octet indicating RSA algorithm
n (RSA modulus) in MPI format

Public
Key
Packet

e (public RSA exponent) in MPI format
1 octet (string-to-key usage)
[Optional] If the string-to-key usage is 0xFF, there is 1
octet here identifying symmetric encryption algorithm for
the private key protection (c.f. Table 1).
[Optional] If the string-to-key usage is 0xFF, there is
"string-to-key specifier" (c.f. Table 1).

[Optional] If the private key is encrypted, initialization
vector (IV) is saved here. This is a random data in the
length of the block of the used block cipher (8 octets for
64-bit block ciphers, 16 octets for AES algorithm).

Area of Publicly
Available Data

Algorithmically dependent numbers in MPI format. The
content for RSA (modulus 1024 bits) is:

version 3 version
4

37

2 octets, prefix of the number d plaintext
128 octets, the value of d encrypted
2 octets, prefix of the number p plaintext
64 octets, the value of p encrypted
2 octets, prefix of the number q plaintext
64 octets, the value of q encrypted
2 octets, prefix of the number pInv plaintext
64 octets, the value of pInv encrypted
2 octets (HSum , LSum) of checksum, a sum of previous

items (MPI numbers) in open form (mod 65536)
plaintext

encrypted

Table 2 specifies how the private data encryption differs in versions 3 and 4 of the
Secret Key Packet. Both formats will be observed separately. A common
element of both formats is a calculation of the checksum as a simple arithmetic sum
of the individual bytes of the private data modulo 65536: checksum = (d1 + d2 + ...+
dr) mod 65536. In both versions the user uses for encryption the chosen symmetric
block cipher in the so-called specific (PGPTM) mode CFB.

Special feature of the version 3 of Secret key Packet format is that the
prefixes of MPI numbers forming the private key and the checksum are not
enciphered. Moreover, in the beginning of every MPI, the state of the CFB is
resynchronized in such a way, that the new block starts precisely from the new MPI
value. In the Secret Key Packet format – version 4, all private MPIs including
prefixes and checksum are encrypted without the resynchronization.

5.2.1 Attack on Version 3 of Secret Key Packet (RSA) Format
The attack which may be launched on version 3 of the format consists in the
possibility of changing the length of the individual MPIs, i.e. of the MPI prefixes, as
they are not encrypted and neither is the checksum. For instance, it is possible to
decrease the prefix of the MPI number pInv by one together with reducing also the
checksum by one at the same time. The validity of the checksum of the record
Secret Key Packet (with new pInv´) will be preserved (all octets of pInv are
summed up, regardless of how much bits are valid in them), but the value of the
private information pInv is changed, as this number is cut short by 1 bit. Likewise, the
values of other private numbers d, p, q can be changed. As soon as the attacker gets
the message and its signature, which will be created using a private key (d, p, q,
pInv´), she will be capable of computing the whole RSA private key. A detailed
procedure is specified in Appendix 2. In this sense, the situation is actually analogical
to the attack on DSA (c.f. §4).

5.2.2 Attack on the Version 4 of Secret Key Packet (RSA) Format
When attacking on the version 4 of the Secret Key Packet format, it is not
possible to utilize the previous procedure directly as the prefixes as well as the
checksum are encrypted. However, these values can be still modified. The
modification consists in using the CFB properties in encryption of the last block of
plaintext. For instance if we use a block cipher with the block length of 16 octets (e.g.

38

in the case of AES) together with an 1024 bits RSA modulus, the last incomplete
block of the ciphertext will contain eight last octets of the pInv number (let us denote
them B1, B2,..., B8) and two octets of the checksum (let us denote them HSum, LSum).
This plaintext will be encrypted by a simple XOR operation with the key material
(encrypted image of the preceding ciphertext). If we carry out the change of “XOR
CONST” type in the last block of the ciphertext, it will appear precisely as “XOR
CONST” after decryption in the plain text, since the XOR operation is both
commutative and associative. The objective is to carry out the change in pInv (to be
more accurate, in the last eight octets of pInv number) and simultaneously in the
checksum (in LSum octet) for pInv´ and checksum´, such that the integrity check agrees
after deciphering. The result will again be a disrupted value pInv, while the Secret
Key Packet format will have a correct checksum. The use of this fake pInv´ is the
same as in the previous case. We will obtain a signature of some message with this
false key and from here we will compute the value of the RSA private key.

Now, we will show how it is possible to change the individual bits of B1 to B8
octets and LSum in such a way, that the check of integrity of the private key agrees
after their modification. The changes of the individual bits of the specified octets will
be carried out on the ciphertext and as we have already stated, with regards to the
CFB mode, these changes will project in the same way into the corresponding bits of
octets of the plaintext. Now, let us anticipate that in the open format of some octet Bi
from the set of octets {B1, B2, ..., B8} some j-th bit (where j ∈ <0, 7>) equals to the j-
th bit in LSum octet. Then it only suffices to change this j-th bit in the enciphered octet
Bi and simultaneously in the enciphered octet LSum and the check of integrity will
agree. If this bit was 1, Bi octet will change to Bi - 2j octet and LSum octet will change
to LSum - 2j. The new checksum will thus be valid. Likewise, if j-th bit of Bi and LSum
octets was 0, the octet Bi will change to Bi + 2j and LSum octet to LSum + 2j. The new
checksum will be valid again.

Fig. 3. Encryption of the last data block of the private key in the Secret Key Packet,
containing the private value pInv

plaintext
B1 B2 B3 B4 B5 B6 B7 B8 HSum LSum

CTn-1

E(CTn-1), i.e.
CTn-1 encrypted by
the block cipher

checksum pInv

ciphertext
B1 B2 B3 B4 B5 B6 B7 B8 HSum LSum

39

As we do not know whether j-th bit of the selected octet Bi is the same as j-th bit of
LSum, we have to examine several possible combinations. We can change a total of 64
bits and the probability of not succeeding is very low (of order 2-64). Let us note that
we will learn of the success of the specified change only after the user tries to sign a
message with this false key. Nevertheless, on average, two attempts should suffice
(one attempt succeeds with probability circa 2-1). Another method is to change the j-th
bit simultaneously always in two octets of any choice from the set {B1, B2, ..., B8},
whereas LSum will be left unchanged. This time we search for a situation, when these
bits are different in the plaintext. Their simultaneous change will annul their influence
in the checksum. Likewise, we can carry out variations with four or eight j-th bits (e.g.
affecting Ba, Bb, Bc, and Bd simultaneously for different index values a, b, c, d ∈ <1,
8>). The result of this change is a disruption of pInv with the same consequences as in
the previous cases, i.e. getting a value of the RSA signature private key.

6. Attack on the Private Keys after their Export

It is necessary to note that, apart from the private keyring secring.skr, it is
possible to use the same method to attack also on a private key which is exported to
the file of the type "ASCII Key File" and then transferred through the network or on a
removable media (e.g. floppy disk, CD, etc.). This file has, apart from an additional
encoding, the same content as the secring.skr file and therefore the same attack
can be applied on it as on the secring.skr file. This means that the transfer of the
private key through this file over the network or on a removable media is highly
dangerous operation and shall be avoided, until the vulnerabilities discussed here are
fixed.

7. Countermeasures

7.1 Basic Temporary Countermeasures

The main cause of the just presented attacks is insufficient control of integrity of the
public as well as private data in the file containing the private key of the user. As a
logical countermeasure a necessity results from this condition to introduce a better
control of integrity of the saved records. We emphasize that this control must secure
also the integrity of the public values which may, however, not be necessarily
enciphered.

The requirement for introduction of a robust integrity check may not be easy to
implement in a short-time horizon. Until the adjustment of the OpenPGP [3] format
occurs for records of the private keys (Secret Key Packet), it is possible to use
temporarily at least the following control tests in the PGPTM programs and others
which implement the OpenPGP format. These are proposed in such a way, that the
keys for the DSA and RSA algorithms which fulfill the below-mentioned relations are

40

not vulnerable to aforesaid attacks. It is presumed, that this test will be carried out as
an additional check of integrity after reading the respective parameters from the file
with the private key. For the actual signing operation only such a key may be used the
values of which pass this test. We stress out that the aforesaid test is not to be a
substitute for the missing check of integrity of the file with the private key but it is to
serve as a temporary measure which prevents the herein specified attacks.

7.2 Temporary Test for DSA

We propose the following temporary test for DSA. The following relations should be
verified:

1. p, q, g, x, y > 0
2. p is odd, q is odd
3. 2159 < q < 2160
4. 1 < g < p
5. 1 < y < p
6. x < q
7. q | (p-1)
8. gq mod p = 1
9. gx mod p = y

It can be easily verified that the tests effectively detect the attack described in §4.
However, let us also note that whereas such type of tests is usually trusted a lot, for
instance in RSA, in case of DSA we have to be careful. Unlike RSA there is only one
value here (private key x), unknown to the attacker. Other parameters are known by
the attacker and she can change them at her own discretion. This is a reason, why this
test is considered only a temporary solution, which must be replaced as soon as
possible with another type of check of integrity of the discussed records, as hereafter
specified.

7.3 Temporary Test for RSA

We propose this temporary test for RSA. The following relations should be verified:

1. e*d mod (p - 1) = 1
2. e*d mod (q - 1) = 1
3. pInv*p mod q = 1
4. n (from the record of the public key) = p*q
5. e ∈ E, where E is a set of possible values planned for e, i.e. for PGPTM for

instance {17, 65537, ...}

Let us note that in the program PGPTM, the tests 1 to 4 together with other checks
are already implemented. However, in the OpenPGP format, these controls are not
anticipated, which makes applications written strictly according to the OpenPGP
description vulnerable to the attack presented in §5.

41

7.4 Other Topics for the OpenPGP Format

Here we state some other topics which would essentially contribute to increasing
safety of the OpenPGP format as well as PGPTM program. However, it is necessary to
perceive them as recommended ideas only. Before specific adjustments are
implemented, they should undergo at least a basic independent analysis. The analysis
of the whole OpenPGP format is however much more complex and reaches beyond
the frame of this paper. The proposed measures are:

1. Enciphering modus CFB should be replaced with a CBC modus
- will make the described attack on the last block of enciphered

private data more difficult

2. Replace the checksum (sum of bytes mod 65536) with HMAC based on
SHA-1 or on another safe hash function (for instance SHA-256, 384, 512,
and so on)

- will make the attacks on protected data and simultaneously on the
integrity check code more difficult

3. The new checksum (HMAC-based) should be:
a) saved in the length of at least 160 bits,

- will make the attacks using the birthday paradox adequately
difficult

b) computed from all data of the record Secret Key Packet (not only
from the private but also from the public values),

- will make the integrity attacks on public as well as private parts of
keys in Secret Key Packet more difficult

c) using the key derived from passphrase in another manner than the key for
symmetric cipher

- will make the attack on HMAC more difficult
d) encrypted together with the private data by a symmetric cipher similarly as

it is in case of checksum in Version 4 of the Secret Key Packet
format

- will make the integrity attacks on public as well as private parts of
the key in Secret Key Packet more difficult

e) operated in such a way that side channel attacks on the CBC modus itself
(c.f. parts D and E in this thesis) are eliminated

4. Use the format of EMSA-PSS type specified in [8] for the RSA signature
scheme

- will make a number of attacks including attack described in
Appendix 2 more difficult

8. Impacts

The types of attacks demonstrated show a considerable impact to security of the
programs based on the format OpenPGP (e.g. PGPTM program itself). Anybody, who

42

can change a file with private key, can get the private key value in algorithms DSA
and RSA based on a single incorrect signature. Moreover, this change need not occur
only in the workstation of attacked user at all. Sensitive point of the system can be
also seen in the files with exported private keys, which are used by the user for a
transfer of her private keys between various stations. The fact that private key is
stored in an encrypted form may provide the user with some feeling of security, which
is false, however. If the attacker gets at e.g. such a removable disk during its
transport, a security of the user’s private key is endangered considerably.

Another scenario which is very efficient in case of the attack described above can
be used in situation, when the file with private key is stored on a shared device. In
such a case, the attacker can be e.g. server administrator who foists a modified version
of this file upon the user for certain time period. Further on, she waits until the user
uses it for signing (time period can be determined by monitoring of user’s station
network activity with relatively high accuracy), and finally she returns the original
content of the file. She can identify the private key value for the signature that has
been generated. When having sufficient control over the entire system, the attacker
can even cover the tracks of the attack, when she sends a message with valid signature
instead the original message furnished with the false signature. This can be done
easily, because at this moment the attacker knows both the message itself and the
proper private key.

Users of the programs based on OpenPGP have to face to a very difficult situation,
when they find out that a faulty signature value was generated. Definitely, they may
wonder, whether they are facing to an impact of intentional attack, or it is “only”
some technical failure. Of course, it is clear that proper care has to be paid to every
file with false signature, as if it was a file containing private key in an open form!
Subsequent treatment includes, first of all, irreversible wiping of the file from the
station or even the server in question.

9. Conclusion

The above mentioned attacks leading to a disclosure of the most sensitive system
information (private signing keys of RSA and DSA algorithms), show clearly the
importance of protection of private keys and public parameters of asymmetric
algorithms in security systems. Let us mention also the fact that it was right the
research study aimed to general problems and principles of asymmetric keys
protection, in the framework of which we saw “how the PGPTM program makes it",
without a primary intention to target to it.

Our analysis was based on general documentation of OpenPGP [3]. We have
revealed serious insufficiencies in it, which can lead to easy vulnerability of the
applications based on it. As a practical example, we can mention the PGPTM program,
which shows resistance to attacks to RSA thanks to sufficient protection beyond the
scope of the OpenPGP, but which is easily vulnerable by the attack to DSA signature
algorithm.

Note that although we limited our study to RSA and DSA algorithms in relation to
OpenPGP, similar vulnerabilities can be expected also in other asymmetric

43

cryptosystems, including the systems based on elliptic curves, if sufficient protection
of private keys and public parameters is not ensured (e.g. we can substitute a weak
elliptic curve similarly to the substitution of the weak PGPrime in §2, etc.). And the
OpenPGP format as well as the PGPTM program are probably not the only cases, when
attacking a given system is enabled by improper protection of the respective
parameters. As a whole, this document calls for attention, which must be paid to
designing protections of asymmetric cryptosystems keys and parameters and to
storing them within a given system.

References

1. Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., and Seifert, J.-P.: Fault Attacks on
RSA with CRT: Concrete Results and Practical Countermeasures, in Proc. of CHES
2002, pp. 260-275, 2002

2. Boneh, D., DeMillo, R.-A., and Lipton, R.-J.: On the Importance of Checking
Cryptographic Protocols for Faults, in Proc. of EUROCRYPT ’97, pp. 37-51, 1997

3. Callas, J., Donnerhacke, L., Finney, H., and Thayer, R.: RFC 2440: OpenPGP
Message Format, November 1998

4. Clulow, J.: On the Security of PKCS #11, In proc. of CHES 2003, pp. 411-425, 2003
5. Joye, M., Lenstra, A.-K., and Quisquater, J.-J.: Chinese remaindering cryptosystems

in the presence of faults, Journal of Cryptology, Volume 12, Number 4, pp. 241-245,
Autumn 1999

6. Lenstra, A.-K.: Memo on RSA signature generation in the presence of faults,
manuscript, Sept. 28, 1996

7. Menezes, A.-J., van Oorschot, P.-C., and Vanstone, S.-A.: Handbook of Applied
Cryptography, CRC Press, 1996, online at http://www.cacr.math.uwaterloo.ca/hac/

8. PKCS#1 v2.1: RSA Cryptography Standard, RSA Laboratories, DRAFT2 – January 5
2001, http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1/

9. Rosa, T.: Future Cryptography: Standards are not Enough, in Proc. of Security and
Protection of Information 2001, Military Academy in Brno, pp. 237-245, NATO-
IDET, Brno, 9. - 11. of May, 2001

10. Rosen, K.-H., Michels, J.-G., Gross, J.-L., Grossman, J.-W., and Shier, D.-R.:
Handbook of Discrete and Combinatorial Mathematics, CRC Press, 2000

11. Yen, S.-H., Moon, S.-J., Ha, J.-C.: Permanent Fault Attack on the Parameters of RSA
with CRT, In Proc. of ACISP 2003, pp. 285-296, 2003

44

Appendix 1: Determination of a Private Key Value by Changing
the DSA Public Parameters

Assumption P1 (Method of DSA signature calculation). Let us assume the DSA
parameters (p, q, g, y, x), where p, q are prime numbers, g ∈ Zp

*, ord(g) = q, y = gx
mod p, 0 < x < q, x is signer´s private key. Signature for the message with hash code
h(m) is then calculated as follows:

1. select random k, 0 < k < q
2. calculate r = (gk mod p) mod q
3. calculate s = k-1(h(m) + xr) mod q, where k*k-1 ≡ 1 (mod q)
4. the signature is the pair (r, s)

The attack described below assumes that the attacker changes the DSA parameters
(p, q, g, y, x) for (p’, q, g’, y, x), where p’ is 159 bit prime number, 2158 < p’ < 2159 and
g’ is a generator of group Zp’

* such that for any r ∈ Zp’
*, we can easily determine the

integer value w, w < p - 1, satisfying (g’)w ≡ r (mod p), i.e. w = log(g’)r. So, we can
solve a problem of discrete logarithm in Zp’

* easily.
In the following two steps, we show that the value of private key x can be easily

determined from the known hash code h(m) and signature (r, s) which was acquired
by algorithm DSA with spurious parameters (p’, q, g’, y, x).

Step 1: Determination of the set K

In this step, we are working with the value of r. It follows from equation P1.2, that r =
[(g’)k mod p’] mod q = (g’)k mod p’, since p’ < q. According to the above given
assumption, the attacker is capable to determine the value of w = log(g’)r easily for any
r. For the unknown value of k we have k = w + b(p’ - 1), where b ∈ Z, b ≥ 0. The
condition from P1.1 shall be added, assuming that 0 < k < q. As p’ is 159 bits long
and q is 160 bits long, so we obtain a set of the values admissible for k, i.e. K = {w +
b(p’ - 1): b(p’ - 1) < q - w, 0 ≤ b ≤ 3 }. This way, we get a set of at most four possible
ki values, and the value k under search is surely among them.

Step 2: Determination of the value x

Now, we will test ki ∈ K one after another and compute the values of xi from P1.3 as
xi = r-1(ki*s – h(m)) mod q, where r*r-1 ≡ 1 (mod q). Note that gcd(r, q) = 1, so the
value r-1 exists and is unique. This way we obtain a set of the values X = {xi: ki ∈ K},
which must include the private key value x being searched for.

All we have to do now is to choose the required value x from the set X. It can be
done easily with the help of the relation y = (gxi mod p), where p and g are the original
public parameters of DSA and y is the public key. By testing four different values (as

45

the maximum) of xi, we can eliminate remaining uncertainty introduced by a low
value of p’ and obtain the value x under search. Note that the element g has the order
q within the group Zp

*. As a result, we can say that only one value of 0 < xi < q exists,
for which it holds that y = (gxi mod p). That is why the x value determined by this
procedure is unique.

Note. The main principle of the entire attack is obvious from the above given
description. It is based on such modification of DSA public parameters, thanks to
which very weak instances of the problem of discrete logarithm occur in signature
calculations. Instead of solving this problem in multiplicative cyclic subgroup of the
group Zp

* having the 160-bit prime order q, this problem can be solved sufficiently in
the cyclic group Zp’

*, where p’ is a 159-bit prime number with a suitably chosen
structure.

The complexity of such instances of the discrete logarithm problem is considered
as absolutely insufficient from the cryptological point of view. Moreover, for a
practical implementation of the above described attack, a generally applicable group
Zp’

* has been found. This group has a special structure, which enables us to solve the
instances generated in the above given problem very quickly, even on a PC of
common (at the time of writing the original paper) office type - see the description of
algorithm A1 given below.

Algorithm A1: Calculation of w, w = loggr, for special type of Zp
*

In the following text, we describe an efficient algorithm for calculation of a value of
discrete logarithm, which can be used for multiplicative group Zp

* that have a certain
special structure (here p equals to the spurious value of p’ mentioned above). It is
assumed that a certain carefully selected group with that structure will be generally
used for all practical implementations of the above described type of attack against
DSA. A structure of the group will be given in a form of the following proposition:

Proposition P2. Let us have a multiplicative group Zp
*, where p is a prime number

with a structure of p = t*2s + 1, where t is a prime number. Further on, let g be a
generator of Zp

*. In the following, we show a procedure of calculation of the w value,
which is efficient for low t (for practical implementation of the foregoing attack, the
generally applicable group with the parameters of t = 167, s = 151 was found).

Before we start describing single steps of the algorithm itself, we should recall

some useful elementary formalisms to be used later on for explaining particular
operations.

Definition D1. [10, page 277] If p and k are positive integers and b is an integer
relatively prime to p, then b is k-th power residue of p if the congruence xk ≡ b (mod
p) has a solution. (In case of k=2 we often use an expression of quadratic residue
modulo p.)

46

Theorem T1. [10, page 279] Let p be a prime number, k an integer positive number,
and b an integer number fulfilling the condition of gcd(b, p) = 1. Then b is k-th power
residue modulo p, iff b(p-1)/d ≡ 1 (mod p), where d = gcd(k, p-1).

Lemma L1. Let p be a prime number and g the generator of the group Zp
*. Then the

value of y, y = gw mod p, is k-th power residue modulo p, where k|(p-1), iff k|w.

Proof. If y is k-th power residue modulo p and k|(p - 1), then from the theorem T1 we
have y(p-1)/k ≡ 1 (mod p). From the assumption y = gw mod p, we get (gw)(p-1)/k ≡ 1
(mod p). As g is the generator of Zp

, it holds that w(p - 1)/k ≡ 0 (mod (p - 1)). From
this expression, we can directly determine that k|w.
Verification of implication in the reverse order is easy: Let k|w, i.e. w = k*c, where c
is a positive integer. Then it holds that y = gw mod p = (gc)k mod p and it follows
directly from the definition D1 that y is k-th power residue modulo p.

�
In the following text, we describe three steps of an algorithm for a calculation of the
discrete logarithm w = loggr under search. It is based on a modified version of
Pohling-Hellman algorithm (see [7]), which would be also very efficient in the given
type of multiplicative group. In our effort for the most specific structure of the group
employed, we derived the following procedure.

Step 1: Determination of the value sw = w mod 2s

Let us assume that w = wn*2n-1 + wn-1*2n-2 + ...+ w1, where n is a number of bits of
binary expansion of w and wi ∈ {0, 1}, for 1 ≤ i ≤ n. Let us concentrate our attention
to determining of the bit w1. If this bit is zero, it holds that w = 2*b, for some integer
b. For the value r = gw mod p, we can derive that r ≡ (gb)2 (mod p), so that r is a
quadratic residue modulo p. On the other hand, if the value of bit w1 is one, then the
value of w is odd, and r is not a quadratic residue modulo p according to the lemma
L1. Based on this analysis and the theorem T1, we can set the following conditions
for w1:

• [r(p-1)/2 mod p] = 1 ⇒ w1 = 0
• [r(p-1)/2 mod p] ≠ 1 ⇒ w1 = 1

Let us continue with determination of w2 and recall that in our setup 4|(p - 1). First,
we adjust r for r2 = (r*gp-1-w1) mod p based on the known w1. By this adjustment, we
obtain the value r2 = gw’ mod p, where w’ = wn*2n-1 + wn-1*2n-2 + ...+ w2*2. Now, if it
holds that w2 = 0, we obtain a equation for the value r2, saying that r2 ≡ (gb)4 (mod p),
where b is an integer. This means that the value r2 is a 4-th power residue modulo p
in this case. If it holds that w2 = 1, then w’ is not divisible by four and the value r2 is
not a 4-th power residue modulo p according to the lemma L1. By this, we can derive
the following conditions for w2:

• [r2
(p-1)/4 mod p] = 1 ⇒ w2 = 0

• [r2
(p-1)/4 mod p] ≠ 1 ⇒ w2 = 1

47

After determining w2, we adjust r2 again for r3 as r3 = (r2*gp-1-2*w2 mod p) and we
continue in determining the values of wi, such that 2i (p - 1). As (p - 1)/2s = t, where t
is an odd prime number, we can determine the values of wi for 1 ≤ i ≤ s. By this, we
obtain the binary notation of the value sw = ws2s-1 + ws-12s-2 + ...+ w1, where sw = w
mod 2s. This is the value, we wished to identify in this step. The entire procedure is
illustrated in Fig. 4.

Fig. 4. Step 1 of the algorithm A1

Step 2: Determination of the value tw = w mod t

It is easy to demonstrate that for the integer j fulfilling the condition of
r(p-1)/t ≡ (g(p-1)/t)j (mod p)

it holds that tw ≡ j (mod t). When j ≤ t - 1, it follows directly that tw = j. We can
identify the value tw in this step by testing the numbers of j, 0 ≤ j ≤ t-1, sequentially
until we identify the j value fulfilling the above written congruence. Such j is then the
value of tw under search.

Step 3: Determination of the value w = loggr

In the preceding steps, we have obtained a set of the following congruencies:
• w ≡ sw (mod 2s)
• w ≡ tw (mod t)

It also holds that gcd(t, 2s) = 1, and so, according to the Chinese Remainder
Theorem (CRT), an unique value 0 ≤ w < t*2s exists, such that it fulfils both
congruencies. As the value t*2s is also the order of the group Zp

* for p = t*2s+1, the
value of w is also the discrete logarithm of the value r under search. Direct procedure
leading to determination of w follows:

Procedure of calculation of sw = loggr mod 2s

1. Let us assume that:
a. the binary notation of sw is sw = wsws-1...w1
b. p is a prime number, p = t*2s + 1

2. set i = 1; f = gp-2 mod p; v = p - 1
3. set v = v/2; y = rv mod p
4. if (y = 1) then set wi = 0 else set wi = 1; r = r*f mod p
5. set f = f2 mod p
6. i = i + 1
7. if (i ≤ s) then goto 3
8. return sw = wsws-1...w1

48

1. set γ ≡ (2s)-1 (mod t); note that the value exists and is unique, because gcd(t,
2s) = 1

2. set v = (tw - sw)*γ mod t
3. return w = sw + v*2s

Proof (of correctness of foregoing procedure). For factor 2s, it is obvious from the
expression for w that w ≡ sw (mod 2s). For factor t, we obtain that w ≡ sw + (tw -
sw)(2s)-1*2s (mod t), and so w ≡ tw (mod t). Moreover, w = sw + v*2s < 2s + (t - 1)*2s =
t*2s. By this, we have verified that the above given procedure actually corresponds to
application of CRT on the above given set of congruencies.

�

Experimental Results

The procedure described in steps 1 through 3 was applied in various configurations of
low-cost office PCs. Table 3 shows average time of calculations for randomly chosen
values of r. We can see that the entire calculation takes some hundreds of
milliseconds in general.

Table 3. Times of calculation of the value w = loggr for a special type of Zp
*

Configuration Mean time of calculation of a single discrete
logarithm (in milliseconds)

Pentium III/ 500MHz
128 MB RAM
Windows NT 4.0 SP 6a

96

Celeron 400 MHz
128 MB RAM
Windows NT 4.0 SP 6a

113

Pentium II 400 MHz
128 MB RAM
Windows 2000 Advanced Server

116

Pentium II 300 MHz
128 MB RAM
Windows NT 4.0 SP 6a

150

Pentium 166 MHz
96 MB RAM
Windows NT 4.0 SP 6a

535

Pentium 75 MHz
46 MB RAM
Windows NT 4.0 SP 4

1020

49

Appendix 2: Attack on a Private RSA Key

In this appendix, we describe briefly how the value of a private RSA key can be
obtained from the value of a faulty signature which was calculated using the affected
private key. The attack is based on an analysis of the OpenPGP format. At the time o
writing the original paper, it could not be applied on the PGPTM directly, because the
PGPTM program performs additional check of the private key integrity going beyond
the scope of OpenPGP definition. However, such an attack is possible in case of
applications implemented strictly according to OpenPGP, and then it has the same
effects as the above presented attack to DSA.

By OpenPGP, the private RSA key consists of the following set of six values (n, p,
q, pInv, e, d), where p, q are prime numbers, n = p*q is a public modulus, p*pInv ≡ 1
(mod q), e is a public exponent and d is a private exponent, i.e. e*d ≡ 1 (mod lcm(q -
1, p - 1)). Basing on this structure, we can assume that the RSA signature
transformation is calculated for the specific value of formatted message m by the
following procedure:

1. s1 = md mod p
2. s2 = md mod q
3. h = pInv*(s2 - s1) mod q
4. s = s1 + p*h
5. s is the result of signature transformation; it holds that s = md mod n

This procedure corresponds to application of the Chinese Remainder Theorem on
the signing transformation, and it makes it possible to calculate this transformation
efficiently. As it was shown in [6] and later published in [5], application of this
technique is quite susceptible to fault side channel attacks making use of an error in
the signature calculation. Note that the first public discussion of fault attacks on RSA
was probably in the article [2]. However, we use a special variant of these attacks
here, which is based on the thought presented for the first time in [6]. And these errors
can be implemented not only by affecting of the attacked device during calculation of
signature, but also e.g. by affecting of certain values forming private key [9]. Here we
draw our attention to one specific type of attack, which should be considered in
OpenPGP. In particular, our aim is here to induce a faulty computation producing a
signature s’ of a known formatted message m, such that

(s’ – s) mod α = 0 and (s’ – s) mod β ≠ 0,
where α, β are particular prime factors of n, αβ = n, and s is a valid (i.e. computed

without faults) signature of m.

Given such a set of equations, it is then easy to compute the prime factors of the
modulus n as α = gcd(n, (s’ – s)) and β = n/α. An obvious obstacle here is that the
attacker doesn’t know the value of s. However, it was shown [6] that if the attacker
knows the value of the formatted message m (which is true when the victim sends her
message together the signature and there are no random values added during

50

formatting the message; these conditions usually both holds in the case of OpenPGP
c.f. bellow), then the equations can be rewritten as

((s’)e – m) mod α = 0 and ((s’)e – m) mod β ≠ 0,
where we used that for the valid signature s it holds that se ≡ m (mod αβ).

The prime factors of the modulus n are then computed as α = gcd(n, ((s’)e – m) mod
n) and β = n/α. Let us note that the reduction modulo n in the expression for α is used
solely for the purpose of effective computation and it is of no other special algebraic
magnitude. It easy to observe, that a faulty computation leading to the above written
equations can be induced by affecting certain values of the private key (n, p, q, pInv,
e, d). In particular, we focus here our attention on substituting pInv with pInv’∈ Z,
such that (pInv’ – pInv) mod q ≠ 0. Let us mention that random change of pInv will
fulfill this condition with a high probability. Other parameters of the private key are
left without changes.

Now, let us have a pair of values (m, s’), where the value of s’ was obtained as a
result of above described signature transformation in which the affected value of
pInv´ was used. It applies that:

1. s1 = md mod p
2. s2 = md mod q
3. h´ = pInv´*(s2 - s1) mod q
4. s´ = s1 + p*h´
5. s´ is the result of signing transformation

Regarding the factor p for this value as it results from the equation given in point 4,
it holds that (s’ - md) mod p = 0 implying that ((s’)e – m) mod p = 0. Furthermore, it is
very likely (with a probability close to 1 - q-1) that for the factor q it holds that (s’ -
md) mod q ≠ 0 implying that ((s’)e – m) mod q ≠ 0. According to the above given
analysis, we can factor n as p = gcd(n, ((s’)e – m) mod n) and q = n/p. By this
procedure, we have obtained the particular prime factors of n from a single faulty
signature. The remaining secret values of the private key can be determined from it
easily, which completes our attack.

Let us mention that the above given procedure is based on a condition that the
attacker knows the value of formatted message m which directly enters the RSA
signature transformation. This condition need not be fulfilled for all types of formats,
but the format RFC 2313 (alias PKCS#1, version 1.5) is recommended in OpenPGP,
where this condition is met.

Similarly as in case of attack to DSA, we recommend to introduce more powerful
check of data integrity in the private key files into the format OpenPGP. No
correction is necessary directly in the program PGPTM 7.0.3, as subsequent checks of
algebraic relations between the values of private key are employed, which defeat the
attempts for attack of this type.

51

C. Further Results and Considerations on Side Channel
Attacks on RSA*

1. Introduction

In 1998, Bleichenbacher [5] described an attack on the PKCS#1 v.1.5 encoding and in
2001 Manger [16] described an attack on the improved scheme EME-OAEP PKCS#1
v.2.1, called also RSAES-OAEP. These attacks underline the significance of the
theorem of RSA individual bits [14] which states that: If RSA cannot be broken in a
random polynomial time, then it is not possible to predict the value of any selected bit
of the plaintext with a probability not negligibly different from 1/2. A negligible
difference for the purpose of this theorem is such ε(n) that for any constant c > 0 it
holds that ε(n) < L(n)-c, where L(n) is the length of an appropriate sufficiently large
RSA modulus n. From the standpoint of side channels, it is important to understand
this theorem as saying: If the value of any chosen bit of the plaintext can be predicted
with a probability not negligibly different from 1/2 then RSA can be broken within a
random polynomial time. Breaking RSA [22] is understood here to mean that a value
of the plaintext is obtained. Bleichenbacher's and Manger's attacks use side channels
which provide the attacker with a relatively large amount of information about the
plaintext (at least that the two most significant bytes are 00 02 or the first one is 00,
respectively).

In this part of the thesis, plaintext will always mean a value of m which is created
immediately after an operation with a private RSA key, m = cd mod n, not the value of
M obtained after decoding m.

In Section 2, we present another possible attack on the RSAES-OAEP (PKCS#1
v.2.1) scheme. It is a chosen ciphertext based side channel attack using only the side
information about Hamming weight of certain 32-bit words produced in the process
of decoding m by the EME-OAEP-DECODE procedure according to PKCS#1 v.2.1.
Theoretically, it is a weakening of the assumptions of Manger's and Bleichenbacher's
attacks. From the practical point of view, the new attack can be used especially on
smart cards. It follows from the theorem of RSA individual bits that it is necessary to
prevent the leakage of any information about the individual bits of the plaintext. Our
attack demonstrates that the Hamming weight of a part of the plaintext can be used to
carry out a successful attack.

In Section 3, we present a very simple but efficient conversion of the
Manger/Bleichenbacher breaking oracle to a universal (signature) oracle. The
principle that a private RSA key should not be used simultaneously for encryption and
for digital signature is well known but is very often violated in practice. Typical
examples include some of the current implementations of Public Key Infrastructure

* An extended version of the paper published as Klíma, V. and Rosa, T.: Further Results and

Considerations on Side Channel Attacks on RSA, In proc. of CHES 2002, San Francisco Bay,
USA, August 2002, pp. 245-260, Springer-Verlag, 2003.

52

(PKI), the SSL/TLS protocol etc. We show that if we can perform Bleichenbacher's or
Manger's attack on the encryption scheme using PKCS#1 (v.1.5 or v.2.1) in such a
way that we can obtain the plaintext then we can also obtain the digital signature of
any message (encoded in any way) using the same private RSA key. In the SSL
protocol this means at least a theoretical ability (c.f. discussion in chapter F, §3.4 of
the thesis) the ability to create signatures with the server-side private key and even
create false servers with the identity of the original server, provided that sufficient
decrypting speed can be ensured.

In Section 4, we present a new fault side channel attack on the RSA-KEM. RSA-
KEM attempted to remove the structural relations in order to prevent leaking of
information about the plaintext. Despite this we discovered a natural method of
obtaining such information. Input plaintext for RSA-KEM consists of symmetric
encryption keys, information about which can be obtained by means of an integrity
check of the messages they encrypt (e.g. checking the PKCS#5 [19] padding). The
result produced by the attack that uses this information is a private RSA key whilst
the attacks on PKCS#1 v.1.5 and 2.1 always discovered only a plaintext.

2. Side Channel Attack on RSAES-OAEP Plaintext

In this section, we will demonstrate a new method of attacking the RSAES-OAEP
scheme (PKCS#1 v.2.1 [18]) at the time when decoding operation EME-OAEP-
DECODE(EM, P) is performed, see Fig. 1. The attack is based on the assumption that
there is a side channel carrying some information about the plaintext. In particular we
assume that the attacker can obtain the Hamming weight w(x) (i.e. the number of '1'
bits) of a word x during the time when the plaintext m is being processed in the MGF
operation (to be specified later). As it was shown in [17], this assumption is realistic,
for instance, in power side channels which tend to leak this information in a relatively
readable way. We note that this attack is possible with some modifications even when
we have access to the Hamming distance of processed data rather than the Hamming
weight.

53

side channel

attack due MGF
(SHA-1)

M = EME-OAEP-DECODE(EM,P)

DB

EM = I2OSP(m)

m = RSADP(c) = cd mod n

M 01 PS pHash

0x00

seed

dbMask

maskedSeed

MGF

maskedDB MGFseedMask
Manger's
attack

Fig. 1. New side channel attack against RSAES-OAEP

2.1 Attack Description

Consider RSA with a modulus n which has the length of L(n) bits where L(n) is the
multiple of 512, i.e. L(n) = 512*k, where k is a natural number. The attack will target
the RSAES-OAEP scheme during the processing of the plaintext immediately after
the RSA decryption operation cd mod n, see Fig. 1. SeedMask will be computed
according to [18] as seedMask = MGF(maskedDB,20) = SHA-1(maskedDB || 00 00
00 00), where the four zero bytes (we will write constants mostly in the hex. notation)
are appended to the message by the MGF function. It follows from the definition of
OAEP encoding that maskedDB always contains 64*k-1-20 bytes, so that 64*k-17
bytes (4 extra zero bytes) enter SHA-1. By the definition of SHA-1 [23] the message
is divided into blocks of 64 bytes, which are processed sequentially by the
compression function. Note that the least significant bit of the original message m is
processed in the last block. It is followed by four zero bytes and 17 bytes of the SHA-
1 padding. For various values of L(n) the particular value of the padding is different,

54

but it is a constant known to the attacker. To present an example, we will consider n,
such that L(n) = 1024. Let us denote the i-th byte of the plaintext as m[i] where m[0]
is the least significant byte. The last block entering the SHA-1 compression function
is in this case equal to m[42.....0] 00 || 00 00 00 80 || 00 00 00 00 || 00 00 00 00 || 00
00 00 00 || 00 00 03 78, where m is followed by 4 zero bytes (from MGF) and the
SHA-1 padding. The padding consists of bit 1, 71 zero bits and a 64-bit representation
of the message bit length. The length is 88810 = 0x00000000 00000378 bits in this
case (64*2–17 = 11110 bytes). The SHA-1 compression function fills this last block
into 32-bit variables W0, ..., W15, where W8 = m[10] m[9] m[8] m[7], W9 = m[6] m[5]
m[4] m[3], W10 = m[2] m[1] m[0] 00, W11 = 00 00 00 80, W12 = 00 00 00 00, W13 = 00
00 00 00, W14 = 00 00 00 00, W15 = 00 00 03 78. And then expansion to words W16, ...,
W79 is performed according to the following relations (where S1 denotes the left cyclic
shift by one bit) W16 = S1(W13 xor W8 xor W2 xor W0), W17 = S1(W14 xor W9 xor W3
xor W1), W18 = S1(W15 xor W10 xor W4 xor W2), etc. When calculating W16, the first
operation performed is W13 xor W8, where W13 is a known constant. This moment is
an example of a general situation when D-1 known parameters and one unknown
enter a D-ary operation. Here, various side channels are often applicable, especially
the power side channel.

We assume that the attacker is able to gather the Hamming weight w(W8) ∈ {0, ...,
32} of word W8 during the W13 xor W8 operation (W8 is the only unknown operand in
it). The same situation arises in the following two operations as well, so we are able to
gather w(W9) and w(W10).

We number the bits of the word Wi (from the msb to the lsb) as Wi,31 Wi,30 Wi,29 ...
Wi,0. We will show that now we can predict the value of W10,8 with a probability not
negligibly different from 1/2. Note that this is the value of the least significant bit
(lsb) of the plaintext m. Hence, using the theorem of RSA individual bits [14] we can
design an attack on the entire plaintext. It is widely known that information about the
lsb of the plaintext leads to very efficient attacks [27, p.144].

2.2 Obtaining the Least Significant Bit of a Plaintext (Building an lsb-Oracle)

The procedure which leads to obtaining the value of W10,8 (i.e. lsb(m)) is as follows.
We denote the ciphertext to be attacked as c, the modulus as n and the public RSA
exponent as e. First, we let the attacked device decrypt and decode the original
ciphertext c. During decoding phase, we gather the values of Hamming weights
w(W8), w(W9), and w(W10). In the next step, we request the equipment to decrypt and
decode the value c' = c*2-e mod n. Plaintext m' is the result of this and during the
calculation we will obtain Hamming weights w(W8'), w(W9'), and w(W10'). If the bit
W10,8 is zero, then the decryption returns the value m' = m >> 1, where ">> 1" means a
shift one bit to the right. Otherwise m' = (m + n) >> 1. If we assume W10,8 = 0 then
(W8', W9', W10') will be created of (W8, W9, W10) by a shift one bit to the right (with the
exception of W10, where the shift only affects the leftmost bits which are then
independently complemented by eight zero bits). The difference between appropriate
Hamming weights w(W8), w(W9), w(W10) and w(W8'), w(W9'), w(W10') is therefore 0
or 1. More precisely w(W8') = w(W8) - W8,0 + W7,0, w(W9') = w(W9) - W9,0 + W8,0,

55

w(W10') = w(W10) - W10,8 + W9,0 = w(W10) + W9,0 and therefore the three relations
included in exactly one of the eight rows of Table 1 are valid.

Table 1. Possible relations among random variables W and W' when W10,8 = 0

W9,0 W8,0 W7,0 Possible relations
0 0 0 w(W10') = w(W10) w(W9') = w(W9) w(W8') = w(W8)
0 0 1 w(W10') = w(W10) w(W9') = w(W9) w(W8') = w(W8) +1
0 1 0 w(W10') = w(W10) w(W9') = w(W9) +1 w(W8') = w(W8) -1
0 1 1 w(W10') = w(W10) w(W9') = w(W9) +1 w(W8') = w(W8)
1 0 0 w(W10') = w(W10) +1 w(W9') = w(W9) -1 w(W8') = w(W8)
1 0 1 w(W10') = w(W10) +1 w(W9') = w(W9) -1 w(W8') = w(W8) +1
1 1 0 w(W10') = w(W10) +1 w(W9') = w(W9) w(W8') = w(W8) -1
1 1 1 w(W10') = w(W10) +1 w(W9') = w(W9) w(W8') = w(W8)

However, if W10,8 = 1, m' is not created by a shift of m, but produced as (m + n) >>

1. This, with a high probability, destroys the linear relations in the Table 1. By the
obtained weights (w(W8), w(W9), w(W10)) and (w(W8'), w(W9'), w(W10')) we determine
whether they fit all relations in any single row. If so, we adopt a hypothesis that W10,8
= 0, otherwise we refuse it and assume that W10,8 = 1. The probability of establishing
the bit W10,8 correctly is close to 1 for an ideal side channel. It will be sufficient to
realize that m is randomized by a hash function in MGF and n is assumed to be
common, not specially constructed. Therefore, the probability of adopting the
hypothesis that W10,8 = 0 if it was W10,8 = 1, can be estimated as the probability that
the random variables W8, W9, W10 and W8', W9', W10' (with the properties that lower
nine bits of W10 are 1000000002 and lower eight bits of W10' are 000000002) will fit all
the relations in some row of Table 1, which is approximately 0.008. That enables us
to obtain the least significant bit of the plaintext m with a high probability and
therefore, in accordance with [14] we can establish the remaining part of m.

For the demonstration purpose, the procedures in [14] can be used directly, in
particular we suggest the methods based on computing gcd (for details see [2]).
However, some improvements of these procedures are necessary when planning a real
practical attack (mainly with respect to a minimization of oracle calls, because some
devices may limit the total amount of RSA decryptions). First, we need to compute
our oracle’s advantage, which we define in the following way: Let the lsb(m) be the
least significant bit of the plaintext m corresponding the ciphertext c and let the Olsb(c)
be the oracle’s estimate of lsb(m). We assume that the oracle works according to the
procedure described above. The advantage adv is defined as adv = |P[lsb(m) = Olsb(c)]
– 1/2|, where the probability of correct estimation, P[lsb(m) = Olsb(c)], is computed
over the probability space of all possible ciphertexts and all possible oracle internal
coin tosses. From [14], we have that the adv must be at least non-negligible (c.f.
above). The higher advantage the better oracle we have. Of course, better oracle leads
to a more efficient attack. For instance, if we have an oracle with adv = 1/2, then we
can use well known and rather quick methods, needing approximately O(L(n)) oracle
calls (c.f. for example [27, p.144]).

56

If adv < 1/2, we have to employ some methods, which are equipped with a built-in
error correction. In fact, these methods must have been already employed in the
proofs of theorems in [2], [14]. But these proofs have rather existential form, which is
not suitable for a practical attack. However, there are stronger proofs developed in
[10] and improved later in [11], which can be used to mount practically feasible
attacks. In particular, we suggest to use the RSA inversion algorithm ([11, p.226])
which describes a randomized algorithm for the RSA decryption, which needs
approximately O(L(n)2adv-2) oracle calls ([11, p.223]).

Note that using the absolute value for adv (c.f. definition above) is possible here
since there is no dependence between previous oracle responses and further oracle
calls in the RSA inversion algorithm. Therefore, we can run this algorithm (in
particular parts 2. and 3. – c.f. [11, p.223]) twice, once for Olsb(c), once for
neg(Olsb(c)), where we use simple inversion of the responses captured in the previous
run. Such a method induces only a constant multiplicative slow down in the
computational part of the algorithm, without an increase of the number of total oracle
calls. On the other hand, this method allows to exploit any correlation between oracle
response and the correct value of lsb(m). This further relaxes requirements on the
quality of particular side channel used in this attack.

There are other questions, which have to be carefully answered when developing
an efficient attack – namely on how to measure Hamming weights, whether to do
some error corrections during a measurement phase or whether to let it all on a
majority decision used in the RSA inversion algorithm, etc. In this study, we strive to
show that such an attack is possible and that it operates in a random polynomial time,
having in mind that its concrete efficiency strongly depends on a particular
implementation. From here, we would like to emphasize the importance of a thorough
implementation, which cannot simply be reduced to the problem of finding “the right
encoding method” as was perhaps deemed earlier.

3. Note on Converting the Deciphering Oracle to a Signing Oracle

In this section, we will demonstrate that if the attacker can use Bleichenbacher's or
Manger's attack on the PKCS#1 v.1.5 or 2.1 encryption scheme, she is also able to
create false signatures using the same private RSA key with any encoding of the
message to be signed. This conversion is technically very simple but it has interesting
practical consequences on the applications where the same key is used both for
encryption and for digital signature. One example is the SSL/TLS protocol used to
secure access to web servers. In its application, the public key certificate at the server
sometimes permits the use of the key both for encryption and for signature. That
means that a signature made by the server's private key is meaningful in the PKI
system and it is not appropriate that it should be forgeable. Conversion will be
demonstrated for both Bleichenbacher's attack on PKCS#1 v.1.5 and for Manger's
attack on PKCS#1 v.2.1. Manger's attack uses only one element of the EME-OAEP
PKCS#1 v.2.1 encoding - whether a zero occurred in the most significant byte (MSB)
of the plaintext decrypted by the private key. We will denote the oracle which tells the
attacker this as “Partial information oracle” PIOMSB: PIOMSB(c) = "yes" iff c = me

57

mod n, MSB(m) = 0x00. Using this oracle a decryption machine (Whole information
oracle) WIOMSB is constructed in [16]. If the plaintext has a format of m = 00 ||,
then the WIOMSB (using PIOMSB) can extract from the ciphertext c the original
plaintext m = WIOMSB(c) = cd mod n. Now, we will assume that the same private key
(d) is used in another RSA scheme (with any encoding) for digital signature. The
attacker can now easily forge the digital signature of any message using the same
private key (d) if she has access to PIOMSB. Let c be the message that the attacker
prepares for signing. She then selects different random natural numbers r = r1, r2, ...
smaller than n and sends c' = c*re mod n to the oracle PIOMSB successively. After
decryption there is calculated m' = m*r mod n on the recipient's side. Unless the most
significant byte of m' is zero, it is rejected by PIOMSB: PIOMSB(c') = "no". Because the
most significant byte of m' is random, it is zero with a probability of 1/256. After
several hundreds of trials, the value of c' will conform with the initial condition of
Manger's attack and WIOMSB then decrypts c': m'= WIOMSB (c') = (c')d mod n. The
attacker then only has to calculate m = m'* r-1 mod n as a valid signature of the
message c. The particular type of encoding for a signature is irrelevant here. The
attacker follows the same procedure when converting Bleichenbacher's attack. This
attack assumes the oracle PIOPKCS-CONF which tells the attacker whether the plaintext
produced by decryption is “PKCS#1 conforming” [5]. That means that the two most
significant bytes of the plaintext must be equal to 00 || 02 and from the 11th byte
onwards some byte must be zero (the separator). On the basis of PIOPKCS-CONF a
decryption machine WIOPKCS-CONF is then constructed. If the plaintext is “PKCS#1
conforming”, then WIOPKCS-CONF can use PIOPKCS-CONF on the corresponding
ciphertext c to obtain the original plaintext m = WIOPKCS-CONF(c) = cd mod n. Using
the same procedure as above, i.e. by a randomly selected r, we test whether PIOPKCS-

CONF on c' = c*re mod n responds “yes”. This time, the probability of such answer is
several hundred times lower than in the case of Manger's attack (depending on the
number of bits of n; for 1024 it is approximately 715-times less, see [16]). As soon as
such a situation occurs, the attacker can again compute m = m'* r-1 mod n as a valid
signature of the message c. Note that this conversion is actually implicitly contained
in the full list of Bleichenbacher’s attack procedure [16], so we only recall it here
explicitly. Also note that the attack described in Section 2 of this paper does not place
any special requirements on the ciphertext. It is therefore suitable for forging
signatures even without any changes.

In the case of the SSL/TLS protocol, the concrete threat of this attack depends not
on the protocol itself, but rather on the PKI, which the particular server works in. This
PKI manages the server certificate and this PKI decides (via certificate attributes)
whether signatures on behalf of that server are meaningful or not. In practice, we have
seen many server certificates, which were attributed for the purpose of document
signing as well.

4 Side Channel Attack on RSA-KEM

After Bleichenbacher's attack on the scheme PKCS#1 v.1.5, the new scheme PKCS#1
v.2.1, based on the EME-OAEP encoding, was recommended for use. However,

58

Manger's attack [16] showed that RSAES-OAEP is also vulnerable to side channel
attacks. After that Shoup [24] proposed the new key encapsulation mechanism RSA-
KEM. This mechanism was believed to have eliminated problems with side channels.
We show that RSA-KEM is also vulnerable to some types of side channel attacks, and
therefore has to be implemented carefully. Next, we will describe an RSA
confirmation oracle (CO) based on RSA-KEM and show how to use a CO to obtain a
RSA private key.

4.1 Confirmation Oracle

The purpose of RSA-KEM is to transmit the symmetric key to the receiver, and so it
is natural to consider the properties of the whole hybrid public-key encryption scheme
H-PKEKEM, DEM, consisting of the Data Encapsulation Mechanism (DEM) and the Key
Encapsulation Mechanism (KEM) (c.f. [24]). Our attack on RSA-KEM is based on
the behaviour of the entire hybrid scheme. Its requirements are sufficiently general
and make it easily realizable in practical applications. We will start by reviewing
some important terms from [24] in a simplified form:

The Key Encapsulation Mechanism (KEM) has this abstract interface:
KEM.Encrypt(PubKey) → (K, C0) - generates a symmetric encryption key K and

by using the public key PubKey creates a
corresponding ciphertext C0

KEM.Decrypt(PrivKey, C0) → (K) - decrypts C0 using the private key PrivKey and
derives the symmetric key K by applying the key
derivation function KDF to that result

The Data Encapsulation Mechanism (DEM) has this abstract interface:
DEM.Encrypt(K, M) → (C1) - encrypts the message M with the symmetric key K

and returns the corresponding ciphertext C1
DEM.Decrypt(K, C1) → (M) - decrypts the ciphertext C1 with the symmetric key K

and returns the plaintext M

The hybrid public-key encryption scheme H-PKEKEM, DEM is a combination of the
KEM and DEM schemes. The algorithm for the encryption of a message M by the
public key PubKey resulting in the ciphertext C is as follows:

1. (K, C0) = KEM.Encrypt(PubKey)
2. C1 = DEM.Encrypt(K, M)
3. Ciphertext C = C0 || C1

On the receiving end, the decryption of the ciphertext C with the private key
PrivKey is carried out as follows:

1. Let C = C0 || C1
2. K = KEM.Decrypt(C0)
3. M = DEM.Decrypt(K, C1)

We assume that there is no integrity check for the key K (e.g. analogous to a check
used in the encoding method OAEP), however, an integrity check exists for the

59

message M in the third step. It can be based on the message padding check, as in
PKCS#5 [19], on the usage of labels as described in [24], or on any other technique.
We assume that the attacker will find out whether the receiver's integrity check rejects
a ciphertext C. In this situation, we can expect that the receiver will send an error
message to the sender. Acceptance or rejection of a ciphertext C defines the receiver
oracle (RO). On the basis of RO we can define the confirmation oracle (CO). This
term may be defined more generally, however, we will only define the RSA
confirmation oracle (RSA-CO) here (c.f. its other variants in parts D and E of the
thesis).

We assume that the private key PrivKey is a private exponent d and n is a public
modulus. Later on, we will show that the modulus n should be a part of the private
key rather than independently taken from the public key, as it is recommended in
[24].

Definition: RSA confirmation oracle RSA-COd, n(r, y).
Let us have a receiver oracle RO that uses RSA in the hybrid encryption H-
PKEKEM,DEM. We will construct a RSA confirmation oracle RSA-COd, n(r, y) →
(ANSWER = “yes/no”) as follows:

1. K = KDF(r); KDF - Key Derivation Function
2. C0 = y; for simplicity we omit the conversion between integers and strings
3. C1 = DEM.Encrypt(K, M); where M contains an integrity check
4. C = C0 || C1
5. Send the ciphertext C to the receiver oracle ROd, n. RO then continues:

a. Compute K = KEM.Decrypt(d, C0) following these steps:
i. Check if y = C0 < n. If not, an error has occurred.
ii. Compute r' = (yd mod n)
iii. K' = KDF(r')

b. M' = DEM.Decrypt(K', C1)
c. Check the integrity of M'
d. If it is correct, the answer of RO is “yes”, otherwise it is “no”

6. The answer of RSA-COd, n(r, y) is “yes”, if RO returned “yes”, otherwise it is
“no”

We note that whenever r = (yd mod n), the oracle returns “yes”. If r ≠ (yd mod n)
then the oracle returns “no” with a high probability close to 1 (the value depends on
collisions in the function KDF and the strength of the integrity check). The key point
is that an attacker may use the oracle RSA-COd, n(r, y) to check the congruence
r ≡ yd (mod n) without knowledge of the particular value of the exponent d used in the
step 5.a.ii above.

4.1.2 Note on Oracle Errors
Let us recall, that the following implication holds with the probability 1:

if r = (yd mod n) then RSA-COd, n(r, y) = “yes”.

However, we should generally assume even if r ≠ (yd mod n) then there is still
certain nonzero probability Perr that RSA-COd, n(r, y) = “yes”. Generally, we may also
assume that the better hybrid encryption scheme is used (mainly with respect to

60

integrity checks), the closer to 0 the value of Perr is. For instance, if Perr is to be
determined by integrity check strength and SHA-1 based HMAC is used for that
purpose, then Perr is close to 2-160, since this is the a-priori probability that an incorrect
unknown symmetrical key would lead to a correct HMAC computation. Therefore, in
many practical situations, we can get around the problem by simply ignoring the
effect of Perr, which is the reason why a deeper elaboration of this subject will be
omitted in the following practical attacks description.

4.2 Fault Side Channel Attacks

The congruence r ≡ yd (mod n), where d is the private exponent, can be confirmed
with the public key as well. However, using RSA-COd, n(r, y) is the natural way of
exploiting the receiver's behaviour. The oracle becomes far more interesting when an
error occurs in step 5.a.ii of the algorithm above. This confirmation oracle can be used
to design many attacks. Therefore, we will only present a brief description of two
examples to illustrate the core of this problem. We note that these attacks are targeted
at the private key, rather than the plaintext. This is paradoxically caused by the
absence of structural checks of the plaintext in RSA-KEM, which is really a positive
quality in other contexts.

4.2.1 Faults in the Bits of the Private Exponent d
The impact of faults in the bits of the private exponent RSA was described in [3]. We
will show that the confirmation oracle RSA-COd, n can be used to mount these attacks
on the hybrid encryption scheme based on RSA-KEM. As an example, we will
assume that the attacker is able to swap the i-th bit di of the receiver's private
exponent d (in step 5.a.ii), and this change will go undetected by the receiver. Such a
situation can occur, for instance, with chip cards and similar devices [26].

Let us assume that a fault occurred in the i-th bit di and let us denote by d' the
defect value of the private exponent. Depending on the value of di, either d' = d + I or
d' = d - I, where I = 2i. Let α ≡ yI (mod n) and α*α -1 ≡ 1 (mod n). For the value r =
yd' mod n we have:

r = (yd * α mod n) if di = 0
r = (yd * α -1 mod n) if di = 1

Using the access to the confirmation oracle RSA-COd' ,n we can find out the value
of di in this way:

1. Randomly pick x, 0 < x < n
2. Compute y = xe mod n, where e is the corresponding public exponent RSA
3. Compute α = yI mod n, if α = 1 goto 1
4. Compute r = x * α mod n
5. If RSA-COd', n(r, y) returns “yes” then set di = 0 else set di = 1.

We can repeat this procedure for various bit positions (and their combinations) and
thus obtain the whole private key d. In the case of irreversible changes we will
gradually carry out an appropriate correction in step 3 using the previously obtained

61

bits. In this way, the corruption of d is allowed to be irreversible. Moreover, it is
enough to obtain only a part of d from which the remaining bits can be computed
analytically in a doable time, see overview in [7]. In [3] and [8], we may find other
sophisticated attacks of this type which were further extended in [6]. We have
presented the confirmation oracle as an “interface” that allows the attacker to apply
some general attacks on “unformatted RSA” to RSA-KEM.

4.2.2 The Usage of Trojan Modulus
We have mentioned that in the RSA-KEM scheme, the modulus n is not a part of the
private key. This would allow for a change of the modulus n without any security
alarm. The following attack shows the need to change this set up.

Let us assume that we can obtain the value x = gd mod n' for an unknown exponent
d and arbitrary values of g and n'. It is widely known that one such value x is
sufficient to discover d. We can, for instance, choose a modulus n' to be a prime in the
form n' = t*2s + 1, where t is a very small prime number and 2s is a very large natural
number. Further we choose g to be a generator of the multiplicative group Zn'

*. Now
we can solve the discrete logarithm problem in Zn'

* by a simple modification of the
Pohlig-Hellman algorithm [20] (c.f. also algorithm A1 in chapter C - Appendix 1 of
the thesis). However, this algorithm requires the value of x, x = gd mod n', directly,
which we cannot obtain from the confirmation oracle. We can only ask the oracle
whether the pair of integers (r, y) satisfies the equation r = yd mod n'. On a closer look
at the Pohlig-Hellman algorithm, we can notice that it can be modified so that the
value of x is not needed directly, but only in comparisons of the type r =? (xα mod n')
for some integers r, α. It means that we only want to know whether r =? ((gd)α mod
n'), which can be obtained by calling the confirmation oracle RSA-COd,

n'(r, gα mod n'). This is the main idea of the modification. The complete algorithm A1
is presented in the next subsection.

This attack is also possible even if the modulus n is part of the private key.
However, in this case, we can expect that it will be a little bit more difficult to plant a
false value of n'. This idea can also be extended to the case when a method based on
the Chinese Remainder Theorem is used for operations with the private key.

4.2.3 Algorithm A1: Computation of the Private Exponent Using the Access
to a RSA Confirmation Oracle

In the following text, we will describe an efficient algorithm for a private exponent d
computation, based on a modified Pohlig-Hellman algorithm for the discrete
logarithm problem in the multiplicative group Zp

*. This group has a special structure
chosen by an attacker, because the value of p is taken to be the fraudulent modulus n'.
The algorithm is also inspired by the ideas presented in Appendix 1 of chapter C of
the thesis. It actually uses the same type of Zp

* to make the whole computation of the
discrete logarithm trivially feasible. The main difference here is that the following
algorithm is primarily designed to be used with the RSA Confirmation Oracle,
therefore, a slightly different algebraic approach to its development is used.

Proposition. Let us assume to have an access to a confirmation oracle RSA-COd, p,
where p is a prime such that p = t*2s + 1 and t is a small prime. Let g be the

62

generator of Zp
*. (We note that the order of Zp

* has to be larger than the highest
possible value of d.)

The following procedure computes the private exponent d in the three steps.

Step 1: Computation of the value Ds = d mod 2s

Let d = db-1*2b-1 + db-2*2b-2 + ...+ d0, where b is the number of bits of the binary form
of d, and di ∈ {0, 1}, for 0 ≤ i ≤ b-1. Let us denote I = 2i and J = 2j. We assume that
2i (p – 1) and we define δ = gd mod p and D(i) = d mod I. Then

δ (p-1)/I ≡ [gd](p-1)/I ≡ [g(p-1)/I]d ≡ [g(p-1)/I]d mod I ≡ [g(p-1)/I]D(i) (mod p), and hence

δ (p-1)/I ≡ [g(p-1)/I]D(i) (mod p) . (1)

The value of D(i) can be expressed as D(i) = di-1*2i-1 + di-2*2i-2 + ...+ d0. We will
show that having access to the confirmation oracle we can easily compute the lowest
s bits of the private exponent d (one bit of d per one oracle call). We will start with
the lowest bit d0 and inductively go to the bit ds-1. For i = 1 from (1) we have δ (p-1)/2 ≡
[g(p-1)/2]d0 (mod p). From the definition of δ, we have δ (p-1)/2 ≡ [g(p-1)/2]d (mod p), and so

[g(p-1)/2]d ≡ [g(p-1)/2]d0 (mod p) . (2)

We note that g(p-1)/2 ≡ p-1 (mod p), and therefore [g(p-1)/2]d0 mod p can achieve only
two possible values, depending on the bit d0. Using the confirmation oracle, we can
either confirm or refute the value of d0 in (2). Let d0 = 1 and let us make the oracle
call RSA-COd, p(p-1, p-1), which represents the congruence (2). If the oracle returns
“yes“, we set d0 = 1, otherwise we set d0 = 0. We note that a correctly generated
private exponent RSA should induce d0 = 1, therefore this step can be omitted. We
determine the remaining bits of D(s) inductively. Let us assume that we know the
value D(j) for some 0 < j < s. Next, we will compute the value D(j+1). From (1) we
have

δ (p-1)/(2J) ≡ [g(p-1)/(2J)]D(j+1) (mod p) . (3)

Let α = dj * 2j = dj * J. Then D(j+1) = d mod 2j+1 = α + D(j). For the value on the
right-hand side of (3), we have that [g(p-1)/(2J)]D(j+1) ≡ [g(p-1)/(2J)]α *[g(p-1)/(2J)]D(j) ≡ [g(p-

1)/2]dj * [g(p-1)/(2J)]D(j) ≡ (p-1)dj * [g(p-1)/(2J)]D(j) (mod p), so we get δ (p-1)/(2J) ≡
≡ (p-1)dj * [g(p-1)/(2J)]D(j) (mod p). Using the substitution δ = gd mod p, we obtain

[g(p-1)/(2J)]d ≡ (p-1)dj * [g(p-1)/(2J)]D(j) (mod p) . (4)

On the right-hand side of (4), almost entirely known values appear, with the
exception of the value of dj. We will again use the confirmation oracle to decide
between the two possible values of the bit dj. We guess that dj = 0 and call the oracle
in the form RSA-COd, p([g(p-1)/(2J)]D(j) mod p, g(p-1)/(2J) mod p), which represents the
congruence (4). If the oracle returns “yes“, we set dj = 0, otherwise we do the
correction dj = 1. The inductive step is finished and we have obtained Ds = D(s).

63

Step 2: Computation of the value Dt = d mod t

It is easy to show that an integer j, under the condition δ (p-1)/t ≡ [g(p-1)/t]j (mod p),
satisfies that Dt ≡ j (mod t). If j < t, then we directly obtain that Dt = j. Therefore, we
can identify the value Dt in this step by successive testing every number j = 0, ..., t-1,
until we find the j that satisfies the congruence δ (p-1)/t ≡ [g(p-1)/t]j (mod p). This j is then
the sought value of Dt. In order to determine this value we rewrite the congruence
(using the definition of δ) as follows:

[g(p-1)/t]d ≡ [g(p-1)/t]j (mod p) (5)

and use the oracle in the form RSA-COd, p([g(p-1)/t]j mod p, g(p-1)/t mod p) gradually for
j = 0,..., t-1. The correct value of j is reached when the oracle returns “yes“, and we
set Dt = j.

Step 3: Computation of the value d

In the previous steps, we have obtained two congruencies d ≡ Ds (mod 2s) and d ≡
Dt (mod t). It also holds that gcd(t, 2s) = 1, and so by the Chinese Remainder
Theorem, there exists a single value 0 ≤ d < t*2s, satisfying both congruencies. The
value of d can be computed directly as bellow:

1. Compute γ, γ*2s ≡ 1 (mod t), a unique value exists because gcd(t, 2s) = 1
2. Compute v = (Dt - Ds)*γ mod t
3. d = Ds + v*2s
Note that this attack requires at most s + t oracle calls together with a trivially

feasible number of group multiplications on Zp
*.

4.2.4 Other Computational Faults
So far, we have only considered the attacks based on modifications of the private
exponent d and the modulus n. However, similar attacks may be developed,
considering general permanent or transient faults that appear during RSA
computations within the function KEM.Decrypt. A discussion on these attacks,
however, is beyond the scope of this paper. For more details, the reader may consult
papers [3], [8]. We can realistically assume that certain types of attacks described
there can be used on RSA-KEM with the use of the confirmation oracle.

4.2.5 Comparison of Attacks on RSA Schemes
Manger [16] showed that the RSAES-OAEP scheme has certain problems with the
most significant byte. These problems must be avoided by proper implementation. We
have shown that RSA-KEM has similar problems, when fault side channel attacks can
occur. Whenever we use RSA-KEM it is therefore essential to exclude fault side
channels. We must carry out reliable private key integrity checks (the modulus should
be a natural part of the private key) as well as using fault tolerant computations. We
still need to consider the consequences of the RSA individual bit theorem and make
sure that no information about any individual bit of the plaintext has leaked. Table 2

64

below contains a brief overview of the current state of most used RSA schemes when
side channel attacks are considered.

Table 2. RSA schemes and side channel attacks

 PKCS1 v.1.5 RSAES-OAEP RSA-KEM
Public attack Yes Yes Yes
Side channel
(information)
used in attack

The information
about whether the
plaintext is
PKCS#1 v.1.5
conforming

− The information about whether the
most significant byte of plaintext is
zero

− Hamming weight of processed data

Fault
side channel

Information
obtained in
attack

Plaintext Plaintext Private key

4.3. General Countermeasures

When we consider the state-of-the-art in cryptanalysis, we can specify three basic
security criteria that need to be satisfied in every cryptosystem design on the RSA
basis. These are:

(a) Resistance to adaptive chosen ciphertext attacks
(b) Resistance to side channel information leakage
(c) Resistance to fault side channels

Imperfect resistance to any of these types of attack can result in the ability to
decrypt ciphertext (mainly (a)) or to obtain directly the value of the private key
(mainly (c)). We have purposely omitted from the list resistance to purely algebraic
attacks, such as problems with a low value of the private or public exponent, among
other similar ones (their overview appears in [7]), since most successful attacks are
based on an incorrect use of RSA and implementation faults. The problem of the
correct use of RSA is rooted in the mathematics underlying the algorithm (for details
see [14], [2], [7], [8], [16], [5], [10], [11] and attacks presented there) and thus it
should be examined from a mathematical perspective. It seems too risky to leave the
issue in the hands of implementators. We also note that cryptanalysis has gradually
accepted the assumption that an attacker has nearly unlimited access to an attacked
system. We do not merely consider attacks on "data passing through" but direct
attacks on autonomous cryptographic units.

Furthermore, we can see that it is not possible to satisfactorily solve the defence
against the types of attacks specified above by a single universal encoding of data
being encrypted. This is a consequence of the fact that the encoding mechanism is
only a part of the whole scheme and as such can only affect part of its properties.

Now we will look at basic defence mechanisms against the above types of attacks.
The first category, adaptive chosen ciphertext attacks, has not been considered in this
paper. We think that a satisfactory solution is the random oracle paradigm [4], which
has been successfully applied in [24], [25], and [12]. For category (b), we need to

65

constantly bear in mind the claim in [14], and prevent any leakage of plaintext
information. It is not possible to limit our attention only to the easily visible
information such as the value of the most significant byte of plaintext in RSAES-
OAEP. In Section 2, we showed that the leakage of information from completely
other part of the scheme has also a negative effect on security. Power side channel
attacks ([15], [17], [1]) and nascent theory of electromagnetic side channel attacks
([21], [13]) is necessary to be considered a particularly high threat. However, defence
measures against these channel attacks [9] are beyond the scope of the analysis
presented here. It was our aim to show that these countermeasures need to be used in
every single function that deals with individual parts of the plaintext. Here we focused
our attention on the function SHA-1 as an example.

Finally, the last category are fault attacks. The vulnerability of RSA to these
attacks does not originate directly from the theorem [14]. However, it seems to be an
innate quality of the RSA system ([3], [7], [8]), too. As well as with the other types of
attacks, certain types of encoding can more or less eliminate fault attacks. We showed
that RSA-KEM, despite it seems to be well resistant to other types of attacks [24], can
be easily and straightforwardly affected by fault side channel attacks. To avoid fault
attacks it is recommended especially:

(i) To consistently check the integrity of the private key and of the other
parameters used with it in its processing

(ii) To minimize the range of error messages
(iii) Wherever possible, to use platforms equipped with fault detection and

eventually also correction facilities (fault tolerant systems)

As a rather strong countermeasure to prevent the attacks described in §4.2.1 and
§4.2.2, we can recommend to check every result x’ = RSADP(y) as y =? [(x’)e mod n],
where RSADP is the RSA decryption primitive [18], e is the public exponent and n is
the modulus. The values of e and n shall be both taken from a trusted record of the
public key independently on the record of the private key. Let y > 0 and let y = xe mod
n, 0 < x < n. If there are no faults, then RSADP(y) = yd mod n, where d is the private
exponent, and the above given check trivially passes. If there are errors due to the
faults expected in §4.2.1, then x’ = RSADP(y) = x*yε mod n, such that with a very
high probability yε mod n ≠ 1, implying x ≠ x’. Since the mapping f: x → (xe mod n) is
injective ([22], [27]), it follows from x ≠ x’ that y ≠ [(x’)e mod n]. In case of the
modifications applied in §4.2.2, the behavior of RSADP is randomized by the
substitution of a prime n’ which is independent on the original modulus n. Therefore,
it holds with a very high probability that x’ = RSADP(y) ≠ x, so the test again
discovers the attack successfully.

5 Conclusion

The RSA individual bits theorem [14] is generally considered to be a good property of
RSA. However, it also shows the way for attacks based on side channels [5], [16].

We have presented another possible attack on the encryption scheme RSAES-
OAEP where, in contrast with the previous work [16], we attack that part of the

66

plaintext “shielded” by the OAEP method. In this, we use the algebraic properties of
RSA, rather than some weakness of the OAEP encoding. To prevent this attack, we
need to eliminate the parasitic leakage of information from individual operations in
partial procedures of the entire scheme. This goes well beyond the scope of the
general description of the OAEP encoding method. Next, we presented a new side
channel attack on the RSA-KEM. This scheme was built to prevent the parasitic
leakage of information about the plaintext, especially under the consideration of
chosen ciphertext attack. However, we managed to point out a side channel that
allows the leakage of this information. Unlike previous attacks that returned the
plaintext, this time the attacker obtains the RSA private key. The attack was again
made possible by the basic multiplicative property of RSA.

Our contribution underlines the significance of the known algebraic properties of
RSA in relation to rapidly evolving attacks based on side channels. Consequently, it is
possible to expect similar side channel attacks in other RSA schemes that may employ
different message encoding. Therefore, it is necessary to pay more attention to side
channel countermeasures in implementations of these cryptographic schemes.

As a small note in our analysis, we pointed out the rule of keeping RSA keys for
encryption and digital signature strictly separated, which is often neglected. We
assumed that the rule is not adhered to, and mentioned an approach to convert both
Manger's and Bleicherbacher's oracles for ciphertext decryption into oracles that can
create valid digital signatures for arbitrarily encoded messages.

References

1. Akkar, M.-L., Bevan, R., Dischamp, P., and Moyart, D.: Power Analysis, What Is
Now Possible..., in Proc. of ASIACRYPT 2000, pp. 489-502, 2000

2. Alexi, W., Chor, B., Goldreich, O., and Schnorr, C.: RSA and Rabin functions:
Certain parts are as hard as the whole, SIAM Journal on Computing, 17(2), pp. 194-
209, 1988

3. Bao, F., Deng, R.-H., Han, Y., Jeng, A., Narasimhalu, A.-D., and Ngair, T.: Breaking
Public Key Cryptosystems on Tamper Resistant Devices in the Presence of Transient
Faults, in Proc. of Security Protocols '97, pp. 115-124, 1997

4. Bellare, M. and Rogaway, P.: Random Oracles are Practical: A Paradigm for
Designing Efficient Protocols, October 20, 1995, originally published in Proc. of the
First ACM Conference on Computer and Communications Security, ACM,
November 1993

5. Bleichenbacher, D.: Chosen Ciphertexts Attacks Against Protocols Based on the RSA
Encryption Standard PKCS#1, in Proc. of CRYPTO '98, pp. 1-12, 1998

6. Blömer, J. and May, A.: New Partial Key Exposure Attacks on RSA, in Proc. of
CRYPTO 2003, pp. 27-43, 2003

7. Boneh, D.: Twenty Years of Attacks on the RSA Cryptosystems, Notices of the
American Mathematical Society, vol. 46, no. 2, pp. 203-213, 1999

8. Boneh, D., DeMillo, R.-A., and Lipton, R.-J.: On the Importance of Checking
Cryptographic Protocols for Faults, in Proc. of EUROCRYPT '97, pp. 37-51, 1997

9. Chari, S., Jutla, C.-S., Rao, J., and Rohatgi, P.: Towards Sound Approaches to
Counteract Power-Analysis Attacks, in Proc. of CRYPTO '99, pp. 398-411, 1999

10. Fischlin, R. and Schnorr, C.-P.: Stronger Security Proofs for RSA and Rabin Bits, in
Proc. of EUROCRYPT '97, pp. 267-279, 1997

67

11. Fischlin, R. and Schnorr, C.-P.: Stronger Security Proofs for RSA and Rabin Bits,
Journal of Cryptology, Vol. 13, No. 2, pp. 221-244, IACR, 2000

12. Fujisaki, E., Okamoto, T., Pointcheval, D., and Stern, J.: RSA-OAEP Is Secure under
the RSA Assumption, in Proc. of CRYPTO 2001, pp. 260-274, 2001

13. Gandolfi, K., Mourtel, C., and Olivier, F.: Electromagnetic Analysis: Concrete
Results, in Proc. of CHES 2001, pp. 251-261, 2001

14. Håstad, J. and Näslund M.: The Security of Individual RSA Bits, in Proc. of FOCS '98,
pp. 510-521, 1998

15. Kocher, P., Jaffe, J., and Jun, B.: Differential Power Analysis: Leaking Secrets, in
Proc. of CRYPTO '99, pp. 388-397, 1999

16. Manger, J.: A Chosen Ciphertext Attack on RSA Optimal Asymmetric Encryption
Padding (OAEP) as Standardized in PKCS #1, in Proc. of CRYPTO 2001, pp. 230-
238, 2001

17. Messegers, T.-S., Dabbish, E.-A., and Sloan, R.-H.: Investigations of Power Analysis
Attacks on Smartcards, in Proc. of USENIX Workshop on Smartcard Technology,
pp. 151-161, 1999

18. PKCS#1 v2.1: RSA Cryptography Standard, RSA Labs, DRAFT2, January 5 2001
19. PKCS#5 v2.0: Password-Based Cryptography Standard, RSA Labs, March 25, 1999.
20. Pohlig, S.-C. and Hellman, M.-E.: An improved algorithm for computing logarithms

over GF(p) and its cryptographic significance, IEEE Trans. Inform. Theory, 24
(1978), 106-110

21. Rao, J.-R and Rohatgi, P.: EMpowering Side-Channel Attacks, preliminary technical
report, May 11 2001

22. Rivest, R.-L., Shamir, A., and Adleman L.: A method for obtaining digital signatures
and public-key cryptosystems, Communications of the ACM, pp. 120-126, 1978.

23. Secure Hash Standard, FIPS Pub 180-1, 1995 April 17
24. Shoup, V.: A Proposal for an ISO Standard for Public Key Encryption (version 2.0),

September 17, 2001
25. Shoup, V.: OAEP Reconsidered (Extended Abstract), in Proc. of CRYPTO 2001, pp.

239-259, 2001
26. Skorobogatov, S.-P. and Anderson, R.-J.: Optical Fault Induction Attacks, In proc. of

CHES 2002, pp. 2-12, Springer-Verlag, 2003
27. Stinson, D.-R.: Cryptography – Theory and Practice, CRC Press, 1995

68

D. Strengthened Encryption in the CBC Mode*

1. Introduction

Vaudenay's attack [1] on the CBC mode of block ciphers with the PKCS#5 padding
[2] uses the information which states whether the deciphered text had the correct
padding. One of Vaudenay's proposals consisted of the encryption of the message
M’= M || padding || hash(M || padding) instead of M, but he rejected it because of the
theoretical weakness. From the practical point of view, the disadvantage of this
proposal is, in particular, that during encryption of the last plaintext block, several
cipher text blocks arise, instead of 1 or 2 blocks as at present. This noticeably disrupts
the semantics of contemporary cryptographic interfaces, for instance CryptoAPI [3].

The present CBC mode (according to the common semantics of programming
interfaces) works as follows: If a part of the plaintext is encrypted, a cryptographic
devise will return one ciphertext block for each plaintext block. There is the only one
exception and this is the encryption of the last block of the plaintext. In this case one
or two ciphertext blocks can be returned (depending on the length of the last block).
Decryption works in the reverse order: A cryptographic device returns one plaintext
block for each ciphertext block, except the decryption of the last block. After
decryption of the last plaintext block, its padding is determined, cut off and the valid
plaintext is returned. The characteristic of the PKCS#5 padding is that the information
which part of the plaintext has to be cut off is determined from and only from the last
ciphertext block. Note that this would be disrupted by Vaudenay's proposal. Based on
this principal the cryptographic interfaces were built and therefore they will not work
if it is violated.†

The goal of this contribution is to design an encryption for the last plaintext block,
such that it respects the semantics of the widely used PKCS#5 padding (thereby
preserving compatibility with the usual cryptographic interfaces) and at the same time
prevents Vaudenay's attack. It is still possible that some systems do not enable the
implementation of some proposed variants of encryption because of new requirements
for working with key material. However, we have paid the attention to minimizing the
number of such systems.

This article does not deal in any way with an alternative definition of padding. We
state that our goal was to design countermeasures, which are practically usable. That
means: They obviously eliminate Vaudenay's attack, they do not introduce other
evidently practically exploitable weaknesses and they clearly do not violate the

* An edited version of the paper published as Klíma, V. and Rosa, T.: Strengthened Encryption

in the CBC Mode, IACR ePrint archive 2002/061, May 2002.
† There can be situations where the system receives the ciphertext blocks consequently and the

fact, that a block is the last block of the whole message, will be recognized just after
receiving this block, not before. In Vaudenay's original proposal, after cutting the padding off
the system would have to take back several plaintext blocks, which in some cases may not be
technically possible.

69

semantics of contemporary cryptographic interfaces. The analysis of the theoretical
characteristics of the proposed variants is an open question and we suggest some
promising ways for a further research of the subject.

1.1 Example

According to Vaudenay's proposal, if a 7 bytes long message M is encrypted using
3DES and SHA-1, we have to encrypt 7 bytes of M, 5 bytes of the padding and 20
bytes of the hash value, which creates 4 blocks (32 bytes in total). The cryptographic
interface would then obtain a request for an encryption of 7 bytes of M (marked as the
last block) and it would return four ciphertext blocks to the calling application.
However, contemporary interfaces designed according to PKCS#5 expect to receive
only one ciphertext block in such a situation. Similar problems arise during
decryption. It has been practically verified, that the introduction of this type of
padding into the subsystem CryptoAPI makes common applications crash.

2. New Proposals for Strengthened Encryption of the Last Block in
the CBC Mode

We propose three variants for strengthened encryption of the last plaintext block in
the CBC mode which are compatible with contemporary cryptographic interfaces,
including CryptoAPI [3]. We assume variant A as the “middle” one. Its “stronger”
version is variant B and the “weaker” one is variant C. The security of these variants
is estimated heuristically in a short time after the presentation of the attack, since our
main intention was to quickly find a practical solution for already existing
applications using the CrytpoAPI. An in depth theoretical analysis of their security
remains an open problem. The variants reflect the capabilities of a designer to use
different cryptographic tools.

Classical encryption of plaintext by a block cipher with key K1 is described by the
following equations: Let us denote plaintext x1, x2, ..., xN, ciphertext y1, y2, ..., yN,
initialisation value IV, and encryption key K1. The standard CBC encryption is then
described by the following equations:

Encryption: y1 = EK1(IV ⊕ x1), yi = EK1(yi-1 ⊕ xi), i = 2, ..., N
Decryption: x1 = IV ⊕ DK1(y1), xi = yi-1 ⊕ DK1(yi), i = 2, ..., N

Strengthened encryption of the last block uses the present definition of the
PKCS#5 padding. It means that xN is the block, padded according to PKCS#5. All
three variants encrypt all plaintext blocks x1, x2, ..., xN-1 (excluding the last block xN) in
the CBC mode with the key K1 in the usual way, i.e.

Encryption: y1 = EK1(IV ⊕ x1), yi = EK1(yi-1 ⊕ xi), i = 2, ..., N-1 and
Decryption: x1 = IV ⊕ DK1(y1), xi = yi-1 ⊕ DK1(yi), i = 2, ..., N-1.

70

The only difference is in the equation for the encryption and decryption of the last
block which we will describe now.

Using the function PBKDF2 from the standard PKCS#5 [2] and three different

values of the salt (SALT) and three counters (COUNT) we derive three different
values of keys K2, K3, and K4:

K2 = PBKDF2(K1, SALT1, COUNT1, dklen),
K3 = PBKDF2(K1, SALT2, COUNT2, dklen),
K4 = PBKDF2(K1, SALT3, COUNT3, dklen),

where dklen is the length of keys K2, K3, and K4, values SALT1, SALT2, and SALT3
are different constants, and COUNT1, COUNT2, and COUNT3 are other constants,
chosen according to the standard PKCS#5.

2.1 Strengthened Encryption - Variant A

We define the equations for the last block in the following way:

Encryption: yN = EK4[DK2(xN) ⊕ EK3(yN-1)]
Decryption: xN = EK2[EK3(yN-1) ⊕ DK4(yN)]

The goal of this type of encryption is that the influence of the variables (xN, yN-1,
yN), affecting encryption and decryption of the last block, is indirect, non-linear and
randomized by transformations unknown to the attacker. The keys K2, K3, and K4
must have these properties:

- They are derived from key K1 by a one-way function.
- It is impossible to determine the individual keys K2, K3, or K4 from the

remaining two.

These additional keys are introduced in order to prevent an attacker from deducing
any information about EKi and DKi, for i ∈ {2, 3, 4}, from eventual knowledge of the
behaviour of the transformation EK1 on many pairs of plaintext-ciphertext blocks.
Note that it is possible to define other kinds of derivations of the keys K2, K3, and K4
which are different from those defined in PKCS#5. It is only necessary to preserve the
properties mentioned above.

2.2 Strengthened Encryption - Variants B1 and B2

According to the designer's capability to use the hash function, we propose variants
B1 and B2. Both are designed in such a way, that the feedback from the penultimate
ciphertext block is a one-way function of the variable yN-1. This property is guaranteed
by the value EK3(yN-1) ⊕ yN-1 in the B1 variant and by the value h(EK3(yN-1)) in the B2
variant. Derivation of the keys K2, K3, and K4 stays the same as in the variant A. Note
that we will use only the n most significant bits from the hash function output, where

71

n is the length of the block of the block cipher. The equations for the last block are
defined in the following way:

Variant B1:
Encryption: yN = EK4[DK2(xN) ⊕ EK3(yN-1) ⊕ yN-1]
Decryption: xN = EK2[EK3(yN-1) ⊕ yN-1 ⊕ DK4(yN)]

Variant B2:
Encryption: yN = EK4[DK2(xN) ⊕ h(EK3(yN-1))]
Decryption: xN = EK2[h(EK3(yN-1)) ⊕ DK4(yN)]

2.3 Strengthened Encryption - Variant C

This variant is proposed as the "minimal" variant for the case where the designer does
not have the possibility of using other transformations than EK1 and DK1, i.e. she has
no possibility to derive new keys from key K1 and she has no possibility to use a hash
function. The equation for the last block is defined in the following way:

Encryption: yN = EK1[DK1(xN) ⊕ EK1(yN-1) ⊕ yN-1]
Decryption: xN = EK1[EK1(yN-1) ⊕ yN-1 ⊕ DK1(yN)]

3. Heuristic Analysis

From the general attack point of view, we can assume all presented variants as an
application of the two modes. Blocks x1, x2, ..., xN-1 are encrypted using the first mode
and the block xN is encrypted using the second mode. There is no change in the case
of encryption of the blocks x1, x2, ..., xN-1 - it is the original CBC mode. Therefore the
proposed variants do not impose new weaknesses here. The encryption of the last
block can be assumed also as the CBC mode, the initialisation value of which is
derived pseudorandomly from the penultimate ciphertext block yN-1. Note that in this
way, the dependency on the original IV is also preserved.

From the point of view of defence against Vaudenay's attack, it is natural to use a
generalized notion of the confirmation oracle [4], which is a useful tool in the study of
side channels. We have used it for the fault attacks on RSA-KEM in chapter C, §4 in
this thesis. In the case of the CBC mode, the confirmation oracle has the form of a
decryption engine, which the attacker sends chosen ciphertexts to. The engine accepts
or refuses the given ciphertext according to whether the last plaintext block has the
correct padding or not. We assume that an attacker has the possibility of obtaining
information about the acceptance or refusal of the last block. Therefore she has an
access to a confirmation oracle, which allows her to confirm whether the last block of
the decrypted plaintext has correct padding or not.

Let us denote PAD the set of allowed paddings according to PKCS#5. In the case
of the classical CBC mode with the PKCS#5 padding, it holds xN = DK1(yN) ⊕ yN-1, xN
∈ PAD. Using the confirmation oracle it is possible to confirm the validity of this

72

relation for an arbitrarily chosen yN and yN-1. With respect to the definition of the set
PAD and with respect to the way in which the value yN-1 enters the expression, the
transformation EK1 can be easily inverted using the confirmation oracle. That is
exactly what Vaudenay has actually shown in his article [1].

Now, let us recall the relations (note that the statement xN ∈ PAD is their crucial
part), which can be confirmed in our variants of a strengthened encryption.

A) xN = EK2[EK3(yN-1) ⊕ DK4(yN)], xN ∈ PAD
B1) xN = EK2[EK3(yN-1) ⊕ yN-1 ⊕ DK4(yN)], xN ∈ PAD
B2) xN = EK2[h(EK3(yN-1)) ⊕ DK4(yN)], xN ∈ PAD
C) xN = EK1[EK1(yN-1) ⊕ yN-1 ⊕ DK1(yN)], xN ∈ PAD

The influence of yN-1 on xN = DK1(yN) ⊕ yN-1 is in the original CBC mode "direct
and non-masked". In particular, we mean that it is fully deterministic for an attacker
and linear. These are the essential conditions which make the confirmation oracle
useful here. In the proposed variants, the variables yN-1 and yN always act indirectly
and via non-linear transformations, unknown to an attacker. Thus, from the
confirmation oracle, the attacker could obtain only information about a relation
among unknown images of input variables. Moreover, except for variant A, the input
variable yN-1 goes through a one-way function. This prevents the attacker preparing
special values for a test in the case, where she has partial knowledge about the
transformation EK3(yN-1) or EK1(yN-1). In this way defence against Vaudenay's attack is
practically ensured.

4. Conclusion

Vaudenay has described a practical attack on the CBC mode based on a fault side
channel. The correction, which Vaudenay proposed has a general character and
doesn't solve practical problems with the real cryptographic interfaces used in
contemporary applications. In this contribution, we have presented practical
countermeasures which are semantically compatible with current cryptographic
interfaces. On the basis of the aforesaid heuristic analysis, we presume that the
proposed variants are not vulnerable to attacks of the Vaudenay type. Their theoretical
security, however, is an open research problem. We suggest considering and
implementing them in the order B2, B1, A, C.

References
1. Vaudenay, S.: Security Flaws Induced by CBC Padding - Applications to SSL,

IPSEC, WTLS, … , In Proc. of Eurocrypt 2002, pp. 534 - 545
2. PKCS#5 v2.0: Password-Based Cryptography Standard, RSA Laboratories, March

25, 1999
3. Microsoft: MSDN Library - July 2001, Platform SDK Documentation, Security,

Cryptography, 2001
4. Klíma, V. and Rosa, T.: Further Results and Considerations on Side Channel Attacks

on RSA, In proc. of CHES 2002, pp. 245-260 ,Springer-Verlag, 2003

73

E. Side Channel Attacks on CBC Encrypted Messages
in the PKCS#7 Format*

1. Introduction

Vaudenay's attack [13] has been further studied in [2], where several extensions of
and countermeasures were proposed. The only practically effective padding types
defined there were referred to as the ABYT-PAD (arbitrary-tail padding) for byte-
oriented messages and the ABIT-PAD for bit-oriented messages. The ABYT-PAD
(ABIT-PAD) was defined in the following way: Let the last byte (bit) of the message
be X. Pick an arbitrary distinct byte (bit) Y and add one or more bytes (bits) Y as
needed to the end of the message. The receiver reads the last byte (bit) of the plaintext
and removes all successive bytes (bits) which are the same as Y from the end of the
plaintext. The main benefit of this padding is that there is no incorrectly padded
plaintext. Therefore, it is no longer possible to use Vaudenay's attack based on a
valid-padding oracle, because such an oracle doesn't tell us any new information (its
output has a zero entropy overall). However, even when using these methods, there
are a lot of other vulnerabilities and possible attacks. In [2], it was underlined that
such attacks are pervasive when the integrity of ciphertexts is not guaranteed. As an
example, the authors of [2] designed a so-called "cryptographic relay" (a device),
which consists of two cryptographic schemes. The first one uses the robust padding
scheme described above, while the second one uses a length-preserving scheme (e.g.
CTR mode). The device decrypts the ciphertext coming from the first scheme and
then re-encrypts it using the second scheme. Because the second scheme does not
hide the original plaintext length, it is possible to use this information for an attack on
the first scheme. In this paper, we show that it is not necessary to design such an
abstract scheme to carry out a successful attack. We simply combine the well-known
cryptographic message syntax standard PKCS#7 [3] with the use of the ABYT-PAD
padding scheme instead of the PKCS#5 padding.

Let us assume that we have access to a confirmation oracle PKCS#7CONF which
tells us for a given ciphertext (encapsulated in the PKCS#7 structure) whether the
decrypted plaintext is correct or not according to the PKCS#7 syntax. This is probably
a very natural assumption, because applications usually have to reflect this situation in
their behavior. It could be a message for the user, an API error message, an entry in
the log file, different timing behavior, etc. We show that by having access to such an
oracle an attacker can invert the underlying block cipher for a particular arbitrary key,
thereby deciphering the secret encrypted message. This attack requires a single
captured ciphertext belonging to the key and approximately 128 oracle calls per one

* An edited version of the paper: Klíma, V. and Rosa, T.: Side Channel Attacks on CBC

Encrypted Messages in the PKCS#7 Format, In Proc. of 2nd International Scientific
Conference: Security and Protection of Information, pp. 75-83, NATO PfP/PWP, Brno,
Czech Republic, 28. - 30.4. 2003.

74

ciphertext byte. This kind of attack can be extended to other padding schemes (i.e.
ABIT-PAD, etc.). Surprisingly, our attack is allowed by those PKCS#7 (v1.6)
properties that are planned to improve version v1.5. According to the new version
(v1.6) there are not only data-octets (bytes) encrypted (as in the previous version), but
it also encrypts the length-octets and type-octets. The main idea of the attack is to
carefully combine the changes at the beginning and the end of the encrypted message.
Then we use the PKCS#7-confirmation oracle which tells us whether the change was
correct or not in the sense of the PKCS#7 v1.6 format. This information thwarts the
original good property of the ABYT-PAD scheme that all deciphered plaintexts are
valid. The "improvement" of version 1.5 of the standard thus brought a new kind of
attack. It follows that an improvement that is good under a local estimation may turn
out to be a bad choice under a broader context evaluation. On the other hand, we do
not express the opinion that our attack is a problem of the step of moving from the
PKCS#7-v1.5 to the PKCS#7-v1.6 standard. The conclusion of our paper is that, just
like the area of asymmetrical cryptography, we cannot hope to fully solve these
problems with side channel attacks just by using a "magic" padding method or an
obscure message-encoding format.

The rest of the paper is organized as follows; firstly we introduce the necessary
notation and description of the PKCS#7 format (§2) and the confirmation oracle
PKCS#7CONF (§3). An attack is then presented in §4. In §5 we summarize the
complexity of the attack and its extensions. Countermeasures are presented in section
§6 and a conclusion is made in §7. The notion of confirmation oracle was for the first
time successfully applied in the area of side channel attacks on asymmetrical
cryptography in [7] (c.f. chapter C, §4 in this thesis). We presumed there that this
notion is general enough that it could be extended for other schemes and algorithms
as well. Its successful application in the area of symmetrical encryption, demonstrated
in this chapter, proves that hypothesis.

2. Preliminaries

2.1 Notation

We will denote CT the ciphertext C without an initializing value (IV), thus C = (IV,
CT). We will assume the block cipher, which works over n-byte blocks, where n is a
positive integer. We will denote EK(B) and DK(B) enciphering and deciphering of a
data block B under a secret (symmetric) key K. We will denote ENC-CBCK and DEC-
CBCK enciphering and deciphering of the whole plaintext and ciphertext in the CBC
mode, respectively. To be consistent with the ASN.1 notation, we will talk about
octets with the assumption that the term octet means the same as byte in this study.
We will use "BIG ENDIAN" ordering of bytes inside the data block, i.e. b1 will be the
most significant byte in the n-byte block B = (b1, ..., bn). Hexadecimal numbers are
denoted using the prefix “0x”, the exclusive OR operation is denoted ⊕ . We will use
it for bits, bytes and blocks of bytes. If the blocks are indexed, we use the second

75

index to pick the byte from it, for instance CTs,n is the last (n-th) byte of the block
CTs. Under such circumstances, indexes start from 1. Note that C1 = IV and CT1 = C2
is the first “payload” block corresponding to the plaintext P1 in our notation.

2.2 PKCS#7 Data Structures

2.2.1 PKCS#7
As stated in [11], the standard PKCS#7 describes the general syntax for
cryptographically protected data, e.g. data which is encrypted, digitally signed, etc.
Data syntax is described using the abstract syntax notation ASN.1 [4]. It admits
recursion, so that one envelope (c.f. [11]) can be nested inside another. The values
produced according to this standard are intended to be BER-encoded [5], which
means that the values would typically be represented as octet strings. The syntax is
general enough to support many different content types. PKCS#7 defines the six
following ones: data, signed data, enveloped data, signed-and-enveloped data,
digested data, and encrypted data. These content types are defined using the notation
ASN.1 and they are used in a number of applications, programs, protocols etc. For
instance, we may take the banking protocol SET or the standard for a secure
electronic mail S/MIME. We will concentrate on the content type "enveloped data". It
contains the data (a binary content) encrypted by the symmetric encryption key,
where this key is transmitted using a public-key algorithm. We will assume that the
data is as usually encrypted by a block cipher in the CBC mode.

2.2.2 ASN.1 Encoding
Before its encryption, the data being encrypted is ASN.1 encoded first, usually by
using the BER/DER encoding [5]. In most cases, encoding consists of adding some
type-octets together with some length-octets before the data itself. The type-octets
define the type of data (type of data structures) and the length-octets define the length
of the data. This length means the length of the original data which follows after the
length-octets. The triplet (type-octets, length-octets, data-octets) is then padded and
encrypted in the CBC mode.

2.2.3 Data Types
There are a lot of data types that can be used in various applications for data being
encrypted. These data types are usually publicly defined and their octet codes are thus
well known for a concrete application. Probably, the most often used one is the data
type OCTET STRING, encoded as one octet with the value 0x04. Without loss of
generality, we may assume that the data type is OCTET STRING for the purpose of
our side channel attack description.

2.2.4 Data Length
Similarly, the length of the original data being encrypted is encoded into one or more
length-octets. If the data length is less than 128, then there is only one length-octet the
value of which states exactly the data length. If the data length is higher than or equal

76

to 128, then it is encoded as a 2 to 128 octets long string of the length-octets. In this
case the first octet has the most significant bit set to 1 and its remaining bits express
the number of the following length-octets. The remaining length-octets then express
the data length in the integer base 256. For instance, if the length of the original data
is less than 64 KBytes, then the first length-octet is 0x82 and the following successive
two octets give the particular length in the base 256. The number of length-octets
doesn't play any important role in our side channel attack. For the sake of simplicity,
we will assume that the data being encrypted has only one length-octet.

2.3 Encryption in the PKCS#7 Version 1.5 and 1.6

Let us have L bytes of data. We will assume its ASN.1 encoding as (0x04, L, data).
Version 1.5 of PKCS#7 [11] was designed to enable PEM compatible formats, but
this brought some inconveniences for applications. Since certain parts of the encoded
image of the data were not encrypted (e.g. type-octets and length-octets remained in
an open form), it required applications to "dip under" the ASN.1 and deal directly
with the BER/DER encoding of data (signing, encryption). Such BER/DER "hacking"
made it difficult for users of ASN.1 compilers to generate encoding/decoding
subroutines, because the head of the data and the data itself were processed
separately. Having accepted the ascendancy of S/MIME over PEM, and the
desirability of avoiding low-level "hacking" of the BER/DER encoding, version 1.6 of
PKCS#7 [3] modified the processing rules to operate on the entire BER/DER
encoding of the data. In particular, this means that data-octets are encrypted together
with the type-octets and length-octets as one binary stream (type-octets, length-octets,
data-octets). It is anticipated that version 2 of PKCS#7 will also incorporate this
change.

2.4 ABYT-PAD Padding Scheme

Before the encryption, we need to append an appropriate padding. Finally, we then
encrypt the quadruple (0x04, L, data, padding) in the CBC mode. Here we assume
that the padding scheme used is ABYT-PAD [2], however the attack can be easily
extended to some other schemes (for instance ABIT-PAD). According to [2], ABYT-
PAD is defined in the following way.

Let the last byte of the plaintext be X and pick an arbitrary distinct byte Y. We add
one or more bytes of Y as needed to the end of the plaintext in such a way that the
new plaintext length is an integer multiple of n. We emphasize that at least one byte
of Y must be appended. In the case of an empty plaintext, Y can be an arbitrary value.
If the padding is not more than n octets long, we talk about a "short" ABYT-PAD
padding. In the case of an unlimited padding length, we will talk about a "long"
ABYT-PAD padding. The receiver reads the last byte of the plaintext and removes all
the successive identical bytes from the end of the plaintext. In the following text, we
will assume that the padding is the "short" one, i.e. the number of padding bytes has
to be from 1 to n. However, it will become clear that it is easily possible to extend the

77

attack to the long ABYT-PAD padding. We also assume that the symmetric key and
the underlying block cipher are always the same during our attack.

3. Confirmation Oracle PKCS#7CONF

Assume that a sender encrypts messages using the PKCS#7 data type "enveloped
data", a block cipher in the CBC mode, and the ABYT-PAD padding scheme. The
encrypted data is ASN.1 encoded, padded, and encrypted using a random symmetric
key, and then the ciphertext CT is put in a specific place in the highly structured data
block "enveloped data" [11]. The symmetric key is then encrypted using a public-key
scheme and is also put in its specific place in the "enveloped data". The initialization
value (IV) is saved in this structure, outside the ciphertext CT (in data type "Content
Encryption Algorithm Identifier"), as well. In particular, we note that it is possible to
change IV without disturbing any other content of the "enveloped data". Furthermore,
we assume that when the attacker changes the length and the content of the ciphertext
CT later on, she will also eventually change the appropriate length octets of all
"higher" structures containing it. Thus, the changed ciphertext CT will be correctly
encapsulated within the PKCS#7 structure. In the following, we will focus only on the
receiver's dealing with the IV and CT items in the block "enveloped data".

Definition (PKCS#7 confirmation oracle PKCS#7CONF(C)). Let us have the
ciphertext C = (IV, CT). We propose a PKCS#7CONF confirmation oracle,
PKCS#7CONF(C): C → (ANSWER = “OK/BAD”), encapsulating the following
procedure at the receiver’s side:

1. P = DEC-CBCK(C); the plaintext P is obtained by deciphering the ciphertext
C in the CBC mode under the symmetric key K

2. Remove the padding from the plaintext P; the resulting message is denoted
as M.

3. Parse M according to PKCS#7:

• Check the type-octets of M; according to the assumptions in §2, we
expect one concrete value to be here - 0x04. If it is not here, an error
has occurred.

• Check the length-octets of M; we expect one length octet to be here (L),
furthermore, L must be equal to the length of M, obtained in step 2. If it
is not, an error has occurred.

4. If the two previous checks in step 3 are successful, the answer of
PKCS#7CONF(C) is “OK”; otherwise it is “BAD”.

We note that no error messages are expected to occur in steps 1 and 2. For the sake
of convenience, we will use the symbols Orac and PKCS#7CONF when referring to the
PKCS#7CONF confirmation oracle interchangeably.

78

4. Attack Description

Let the attacker intercept a valid ciphertext C = (IV, CT1, CT2, ..., CTs), s ≥ 1, and let
(P1, P2, ..., Ps) denote the corresponding plaintext. We will show that using a
PKCS#7CONF she can then compute X = DK(Y) for any arbitrary chosen Y, obviously
implying that she can decipher the whole intercepted ciphertext C.

Recall that we are working with short messages (one length-octet) with the short
ABYT-PAD padding. However, we will show in §5 how to modify the attack for
longer messages and longer ABYT-PAD padding.

The attack has several steps. The first step is to be carried out only once, in the
preparation phase. For simplicity, we assume that we have only one intercepted
ciphertext C. If we had more ciphertexts, the preparation phase could be easier.

4.1 Preparation Phase: Finding the Length L of the Message

Since C is a valid ciphertext, the corresponding message M (the plaintext without
padding) conforms to PKCS#7. Thus, we have P1,1 = 0x04 and P1,2 = L, where L is the
length of M. In this step, we determine the value of L using a PKCS#7CONF oracle.

Let s ≥ 3 (see the remarks at the end of this paragraph for managing the attack for s
< 3). This condition guarantees that changes made in CTs-1 will not affect the first
plaintext block containing the length octet. Let us denote LPAD the length of padding
and LDATA the length of remaining data bytes in the last plaintext block, i.e. LDATA
+ LPAD = n. At first, we will successively test every byte from the end of the last
plaintext block whether it is a padding byte or a data byte. When we find the first data
byte from the end, we have the value LDATA and we stop testing. According to our
assumptions, 0 ≤ LDATA ≤ n -1, because at least one byte (Ps,n) is a padding byte
according to ABYT-PAD padding. Therefore we begin our test with Ps,n-1 following
the pseudocode written below. We will denote as C’ = (IV’, CT1’, CT2’, ..., CTs’) our
changes in the original ciphertext C. We assume that, during initialization, the
following is set: IV’ = IV and CTi’ = CTi.

Set LDATA = 0

For j = (n - 1) downto 1

{

Set CT’s-1,j = CTs-1,j ⊕⊕⊕⊕ 1

If Orac(C’) = "OK" then set LDATA = j, break

/* The change will result in the corruption of the
whole block Ps-1 and of the byte Ps,j.

If Orac(C’) returns "OK", then the change of the
original plaintext byte Ps,j to the value Ps,j ⊕ 1

79

didn't affect the length L. Therefore Ps,j is already
the last data byte and we have LDATA = j.

If Orac(C’) returns "BAD", the length L doesn't
conform to the padding. There are two possibilities:

i) Ps,j was the last data byte, but it has
been unwittingly changed to the padding
byte

ii) Ps,j was the padding byte, which has been
changed to a non-padding byte

We can, however, decide between these two
possibilities by setting CT’s-1,j = CTs-1,j ⊕ 2 and
calling the oracle again.*/

Set CT’s-1,j = CTs-1,j ⊕⊕⊕⊕ 2 and call Orac(C’)

If Orac(C’) = "OK" then set LDATA = j, break

/* If the oracle returns "OK", then Ps,j was a data
byte. If it returns "BAD", Ps,j was a padding byte.
In this case we continue to test the next bytes on
the left.*/

}

Set L = (n - 2) + (s - 2)*n + LDATA

/* Note that (n-2) bytes are counted from the first
block and LDATA bytes come from the last block. The
resting (s-2) blocks have the full length n.*/

Remarks
• There is the possibility of further optimising this process by various methods, for

instance by the interval halving method, similarly as in [2]. In this case, we would
need O(log2n) oracle calls. On the other hand, it is only a marginal improvement,
because this step is carried out only once in the preparation phase.

• When the intercepted ciphertext has only one block CT1, i.e. s = 1, we can use the
same process as in case s ≥ 3, because we will have full control over changes in the
first plaintext block. We only have to operate with the field IV instead of CTs-1.

• In the case s = 2, we can artificially lengthen the original ciphertext (IV, CT1, CT2),
for instance, as (IV, CT1, CT2, IV, IV, CT1, CT2). It is only necessary to change the
second byte of the primary IV appropriately, because we added 4*n bytes to the
message M. For instance if n = 8, we artificially added 32 bytes to it and we can fix

80

the length easily by xoring the byte P1,2 with 0x20, because the length of the
original message M was less than 14, therefore P1,2 ⊕ 0x20 = P1,2 + 0x20. Note
that, since the mode of CBC is used, changes on P1 are done easily by
manipulating with the value of IV. Now, we can follow the process above for s ≥ 3.

Now we have the plaintext byte P1,2 = L of the ciphertext C. The complexity of this
step is maximally 2*(n - 1) oracle calls.

4.2 Computing X = DK(Y), Leaving One Byte of Uncertainty

Now, we use the first two blocks (IV, CT1) of the intercepted ciphertext and create a
new one C = (IV, CT1, S, T, Y), where S and T are arbitrarily chosen and Y is the block
which is to be decrypted. Let us denote P = (P1, P2, P3, P4) as the plaintext
corresponding to the ciphertext C. From the foregoing steps, we have P1,1 = 0x04 and
P1,2 = L, where L is known from the previous step. Using the following pseudocode,
we determine X = DK(Y), leaving one byte of uncertainty. As above (in §4.1), changes
on C will be denoted as C’.

Let A = Xn ⊕⊕⊕⊕ Tn = Xn ⊕⊕⊕⊕ T’n /* Note that Tn doesn’t
change during the computation, so Tn = T’n.*/

For i = (n - 1) downto 1

{

/* In this loop, we derive the i-th byte P4,i, where
P4,i+1 =...= P4,n are padding bytes, all equal to A.*/

Set N = (n - 2) + n + n + (i - 1)

Set IV’ = IV ⊕⊕⊕⊕ P1,2 ⊕⊕⊕⊕ N

/* After deciphering C’, the oracle gets the number
N in the place of P’1,2. Thus it will expect i - 1
data bytes and n - (i - 1) padding bytes in the last
plaintext block P4.*/

(#) For j = 0 to 255 do

{

Set T’i = Ti ⊕⊕⊕⊕ j

If Orac(C') = "OK" go to (##)

81

/* If Orac(C’) = "OK", the plaintext is PKCS#7
conforming and Xi ⊕ Ti equals to the padding byte
A. Thus, we have Xi ⊕ Ti = Xi+1 ⊕ Ti+1 =...= Xn ⊕ Tn
= A and we can continue to derive the next byte.*/

}

If (i > 1) then set T’i-1 = Ti-1 ⊕⊕⊕⊕ 1

else set S’n = Sn ⊕⊕⊕⊕ 1

Go to (#)

/* If the oracle has always responded "BAD" in the
preceding cycle, it means that when the correct
value (A) occurred on the i-th byte, it accidentally
also occurred on its left side. Therefore, we change
the left byte and go back to (#). Now, the oracle
must once respond "OK".*/

(##) /* Continue to the next loop.*/

}

Let us set T = T’ at the end of the procedure. We have

(4.2) X1 ⊕ T1 = X2 ⊕ T2 = ... = Xn ⊕ Tn = A,

where the values of Ti (and eventually also Sn) have been adjusted above. Note that
for n > 32 we will need more length-octets, so it would be necessary to slightly
modify this procedure. However, for the most of contemporary block ciphers, we
have n ≤ 32, therefore this technical modification will be omitted here.

In this step, we need circa 128*(n - 1) oracle calls on average. According to the
procedure written above, the maximum number of oracle calls is clearly limited by
the number 512*(n - 1).

4.3 Determining the Remaining Byte of Uncertainty

Now, we use the blocks T and Y created in the previous step. The ciphertext C = (T, Y)
gives the one plaintext block consisting of n bytes having the same value A. We will
now change T1, T2 and Tn to obtain a PKCS#7 conforming message. We construct the
message in such a way to have the length of n - 3 octets and one padding byte. We
then determine the value of A in the following way. Recall that changes on C will be
denoted as C’.

82

For j = 0 to 255 do

{

Set T’1 = T1 ⊕⊕⊕⊕ 0x04 ⊕⊕⊕⊕ j

Set T’2 = T2 ⊕⊕⊕⊕ (n - 3) ⊕⊕⊕⊕ j

Set T’n = Tn ⊕⊕⊕⊕ 1

C' = (T’, Y)

/* Note that C' decrypts to the plaintext bytes (A ⊕
0x04 ⊕ j, A ⊕ (n-3) ⊕ j, A,..., A, A ⊕ 1). */

If Orac(C') = "OK" then A = j, break

/* If Orac(C') = "OK", the plaintext is PKCS#7
conforming. Thus, we have A ⊕ 0x04 ⊕ j = 0x04. We
then easily obtain the unknown A as A = j. */

}

Now, we use the value T and substitute it with A into the system of equations (4.2),
thereby deriving the value of X. This step requires circa 128 oracle calls on average. It
takes maximally 256 oracle calls.

5. Complexity of the Attack and Its Extensions

Recall that the complexity of the attack is at most 2*(n - 1) calls in the preparation
phase. This phase is carried out only once for a particular symmetric key. To decipher
each ciphertext block, we then need circa 128*(n - 1) + 128 = 128*n oracle calls on
average. The maximum number of oracle calls per ciphertext block is bounded above
by 512*(n - 1) + 256 and obviously, the whole attack has a linear complexity O(n),
which can be regarded as trivially feasible attack from the cryptanalytic viewpoint.

In the following text, we summarize our remarks on possible extensions and
modifications of the attack.

• In most cases of longer messages with more than one length-octet, we can
easily derive the plaintext byte P1,2 = L in the preparation phase. In these
cases P1,2 is the first length-octet and thus P1,2 is equal to the number of
remaining length-octets + 0x80 (c.f. §2.2.4). We can estimate the number of
remaining length-octets directly from the length of the ciphertext.

• Generally speaking, when longer messages (with any kind of ABYT-PAD
padding) with more than one length-octet are used, we can successively
change the third, fourth, etc. byte of the IV and send the ciphertext to the

83

oracle. If we change the length octet, the oracle returns "BAD". If it returns
"OK", we hit the first data octet. Now, we have the number of length octets
(W) and we get P1,2 = 0x80 + W immediately.

• A variant of this attack can be also derived for the ABIT-PAD padding.
Since the only difference between ABYT-PAD and ABIT-PAD is the size of
the elementary block unit, the derivation is a matter of changing the byte-
oriented approach for a bit-oriented one. Note that the PKCS#7 format
discussed here is byte-oriented in its nature, therefore even when using
ABIT-PAD, we pad bytes. However, we may expect that the PKCS#7CONF
based on ABIT-PAD would, in a certain way, allow an attacker to do the
inversion of EK(B) bit-by-bit instead of byte-by-byte. Such an approach
generally helps the attacker to improve the effectiveness of her attack. Such
an improvement would be useful in case of extremely long padding string.

6. Countermeasures

The attack presented here is based on the behaviour of a typical transport-layer
application, which routinely receives a ciphertext, deciphers it, and decodes its data
payload, which is then passed to the upper layers. If an error occurs during this
processing (e.g. ASN.1 parser fails, the padding is incorrect, etc.), it is natural that the
application informs its communicating peer. Ignoring these errors is theoretically
possible, but in practice it wouldn't make a lot of sense. Moreover, such a failure
would be probably detectable from the behaviour of the upper-layer application.

We emphasize that the attack discussed here is not only a particular problem for
padding methods. Generally speaking, such an attack can be expected whenever the
following conditions are fulfilled:

(i) there are some formatting rules set for plaintexts which must be checked,

(ii) an attacker can freely modify captured ciphertexts and re-send them to the
communicating application,

(iii) the changes made in (ii) induce predictable changes of the corresponding
plaintext.

The combination of the CBC mode with the PKCS#5 padding scheme was perhaps
the most obvious way in which the conditions given above were fulfilled. The only
thing that is still surprising is the amount of time it took for the cryptanalysts to
disclose this weakness. To avoid other possible “surprises”, we should constantly
verify these conditions when designing new encryption schemes. In this study, we
addressed the situation where the first condition seems to be thwarted, since the
padding method ABYT-PAD does not impose any checkable rules. However, the
condition is easily restored if we incorporate the formatting rules given by the
PKCS#7 standard. It clearly follows that despite being very tempting, we cannot hope
to solve problems of attacks addressed here and in [2] and [13] by thwarting only the
first condition written above.

84

A better way seems to be to focus on conditions (ii) and (iii). We can use the paper
of Krawczyk [8] to conjecture that the best way is generally to thwart the second
condition by using the authentication of ciphertexts. This countermeasure was also
generally recommended in [2]. However, in some older applications it might not
always be easy to introduce such a modification. Therefore, we looked at thwarting
the last conditions. In [6] (c.f. chapter D of the thesis), we designed a method that
effectively prevents an attacker from making predictable changes of the plaintext by
changing the ciphertext. Our method then enables any padding method that is limited
to the last block to be used. The main idea of our approach is encrypting the last block
in a different way and under a different key. This so-called strengthened encryption
changes the definition of the encryption and decryption process, but it is still
compatible with the original CBC encryption from the point of view of data structures
and their length. From a practical viewpoint, we conjecture that for existing
applications and protocols it is better to change the program codes or data semantic
rather than the data structure itself. We must emphasize that our method works well,
unless there are other structural checks of plaintexts. Therefore, generally we strongly
recommend adding a cryptographic check of ciphertexts in the sense of [8].

7. Conclusions

In this chapter of the thesis, we have shown that we cannot hope to fully solve
problems with side channel attacks on the CBC encryption mode by using a “magic”
padding method or an obscure message-encoding format. Vaudenay showed in [13]
that the CBC encryption mode ([9], [1]) combined with the PKCS#5 padding scheme
[10] allows an attacker to invert the underlying block cipher, provided she has an
access to an oracle which for each input ciphertext states whether the corresponding
plaintext has a valid padding or not. Countermeasures against this attack using
different padding schemes were studied in [2] and the best method was referred to as
the ABYT-PAD.

In this paper, we combine the well-known cryptographic message syntax standard
PKCS#7 [3] with the use of ABYT-PAD in the place of the PKCS#5 padding scheme.
We assume that the attacker has access to an oracle PKCS#7CONF which tells her for a
given ciphertext (encapsulated in the PKCS#7 structure) whether the deciphered
plaintext is correct or not according to the PKCS#7 (v1.6) syntax. This is a very
natural and straightforward assumption, because applications usually have to reflect
this situation in their behaviour. It could be a message for the user, an API error
message, an entry in the log file, different timing behaviour, etc. We have shown that
having an access to such an oracle enables the attacker to invert the underlying block
cipher and decipher the encrypted message. It requires a single ciphertext for a
particular key and approximately 128 oracle calls per ciphertext byte.

Surprisingly, the attack is allowed by those PKCS#7 (v1.6) properties that are
designed to improve version v1.5. They are also planned for version 2. However, the
improvement of the standard brought a new kind of attack. It follows that an
improvement beneficial according to a local estimation may turn out to be a bad
choice under a broader context evaluation. On the other hand, we do not express the

85

opinion that our attack is a problem of the step of moving from the PKCS#7 v1.5 to
the PKCS#7 v1.6 standard.

The attack described here can be also easily extended on other TLV-like schemes.
The TLV stands for tag-length-value, which is a common nickname of many data
protocols and formats used nowadays. Since TLV involves also many standards used
in the banking sector, it indicates that existing systems in such areas deserve certain
amount of attention according to the attack presented here.

The discussed problems with side channel attacks on the CBC encryption mode
should be solved using strong cryptographic integrity checks of ciphertexts. Our
contribution should be regarded as further evidence that these checks must be
included in the new cryptographic standards and protocols.

References

1. Baldwin, R. and Rivest, R.: RFC 2268 - The RC5, RC5-CBC, RC5-CBC-Pad, and
RC5-CTS Algorithms, October 1996

2. Black, J. and Urtubia, H.: Side-Channel Attacks on Symmetric Encryption Schemes:
The Case for Authenticated Encryption, In Proc. of 11th USENIX Security
Symposium, San Francisco 2002, pp. 327-338

3. Extensions and Revisions to PKCS #7 (Draft PKCS #7 v1.6), An RSA Laboratories
Technical Note, May 13, 1997

4. ITU-T Recommendation X.680 (1997), ISO/IEC 8824-1:1998, Information
Technology - Abstract Syntax Notation One (ASN.1): Specification of Basic
Notation

5. ITU-T Recommendation X.690 (1997), ISO/IEC 8825-1:1998, Information
Technology - ASN.1 Encoding Rules: Specification of Basic Encoding Rules (BER),
Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)

6. Klíma, V. and Rosa, T.: Strengthened encryption in the CBC mode, Cryptology ePrint
Archive: Report 2002/061, http://eprint.iacr.org/2002/061.pdf

7. Klíma, V. and Rosa, T.: Further Results and Considerations on Side Channel Attacks
on RSA, In proc. of CHES 2002, San Francisco Bay, USA, August 2002, pp. 245-
260, Springer-Verlag, 2003

8. Krawczyk, H.: The Order of Encryption and Authentication for Protecting
Communications (or: How Secure Is SSL?), CRYPTO' 01, pp. 310 - 331, Springer-
Verlag, 2001

9. NIST Special Publication: SP 800-38A 2001 ED - Recommendation for Block Cipher
Modes of Operation, December 2001

10. PKCS#5 v2.0: Password-Based Cryptography Standard, RSA Laboratories, March
25, 1999

11. PKCS #7 v1.5: Cryptographic Message Syntax Standard, RSA Laboratories,
November 1, 1993

12. Rosa, T.: Future Cryptography: Standards are not Enough, in Proc. of Security and
Protection of Information, NATO-IDET, 2001, Military Academy in Brno, pp. 237 -
245, Brno, 2001

13. Vaudenay, S.: Security Flaws Induced By CBC Padding - Application to SSL, IPSEC,
WTLS..., EUROCRYPT '02, pp. 534-545, Springer-Verlag, 2002

86

F. Attacking RSA-based Sessions in SSL/TLS*

1. Introduction

In contemporary cryptography, it is widely agreed that one of the most important
issues of all asymmetric schemes is the way in which the scheme encodes the data to
be processed. In the case of RSA [14], the most widely used encoding methods are
described in PKCS#1 [9]. This standard also underlies RSA-based sessions in the
family of SSL/TLS protocols. These protocols became de facto the standard platform
for secure communication in the Internet environment. In this part of the thesis, we
assume certain familiarity with their architecture (c.f. §5). Since its complete
description is far beyond the scope of this article, we refer interested readers to the
excellent book [10] for further details. In 1998 Bleichenbacher showed that the
concrete encoding method called EME-PKCS1-v1_5, which is also employed in the
SSL/TLS protocols, is highly vulnerable to chosen ciphertext attacks [1]. The attack
assumes that information about the course of the decoding process is leaking to an
attacker. We refer to such attacks as side channel attacks, since they rely on side
information that unintentionally leaks out from a cryptographic module during its
common activity (c.f. chapter A of this thesis for introduction to the theory of side
channels).

Bleichenbacher showed that it is highly probable that side information exists
allowing the attacker to break the particular realization of the RSA scheme in many
systems based on EME-PKCS1-v1_5. He has also shown how to use such information
to decrypt any captured ciphertext or to sign any arbitrary message by using a
common interaction with the attacked cryptographic module. As a countermeasure to
his attack it was recommended to either use the EME-OAEP method (also defined in
PKCS#1) or to steer attackers away from knowing details about the course of the
decoding process. In the case of the SSL/TLS protocols it seemed to be possible to
incorporate the second type of countermeasures. The story of the attack ended here by
incorporating appropriate warnings in appropriate standards [9], [10], [12], and [15].
Security architects were especially instructed not to allow an attacker to know
whether the plaintext P being decoded has the prescribed mandatory structure marks
or not.

Besides being warned to carry out the above-mentioned countermeasure, architects
were also instructed to carefully verify all possible marks of P that are specific for the
SSL/TLS protocols. In particular, they were told to check the correctness of a version
number (c.f. §5.2 and [12]), which is stored in the two left-most bytes of the
premaster-secret. Unfortunately, it has not been properly specified how such a test
may be combined with the countermeasure mentioned above and what to do if the

* An extended version of the paper: Klíma, V., Pokorný, O., and Rosa, T.: Attacking RSA-

based Sessions in SSL/TLS, in Proc. of CHES '03, Cologne, Germany, September 7-11, pp.
426-440, Springer-Verlag, 2003.

87

"version number test" fails. Designers may be very tempted to simply issue an error
message. In reality, however, such a message opened up a Pandora’s box bringing a
new variant of side channel attack. We present this attack and discuss its
implementation details. It turns out that the version number, which was initially
believed to rule out the original attack [1], even allows a relatively optimized variant
of the attack if the version number check is badly implemented. Our practical tests
showed that among hundreds of SSL/TLS servers randomly chosen from the Internet,
two thirds of them were vulnerable to our attack (for details see §4.3).

We note that the TLS protocol may be historically viewed as an SSL bearing the
version number 3.1 [12], while the SSL with the version number 3.0 is often referred
to as a "plain" SSL. There are some minor changes between SSL and TLS, but these
changes are unimportant for the purpose of this study, since we rely on the general
properties, which are common to both SSL v. 3.0 and TLS. Therefore, we will talk
about them as about the SSL/TLS protocols. We note that SSL protocols with version
numbers less than 3.0 will not be considered here, since they have already been
proven to have several serious weaknesses [10], [16].

The rest of this chapter is organized as follows: in §2 we introduce a bad-version
oracle (BVO), which is a construction that mathematically encapsulates side
information leaking from the decoding process. The BVO is then used for mounting
our attack in §3. The attack is based on an extended variant of Bleichanbacher’s
algorithm from [1]. The complexity of the attack together with the statistics of the
vulnerable servers found on the Internet are given in §4. In §5 we discuss some
technical details behind the practical realization of the attack. Countermeasures are
then proposed and discussed in §6. The conclusions are made in §7. In the appendix
we recall a slightly generalized version of the original Bleichenbacher’s algorithm [1].

Proposition 1 (Connection and session). Unless stated otherwise, the term
connection means the communication carried out between a client and a server. It
lasts from when the client opened up a networked pipe with the server, until the pipe
is closed. The term session is used to refer to a particular part of this connection
which is protected under the same value of symmetrical encryption keys.

Proposition 2 (RSA-based session). We say that the session is RSA-based if it uses
the RSA scheme to establish its symmetrical keys.

2. Bad-Version Oracle

We start by recalling the definition of PKCS-conforming plaintext [1]. Unless stated
otherwise, the term plaintext means an RSA plaintext. Furthermore, we denote RSA
instance parameters as (N, e, d), where N is a public modulus, e is a public exponent,
and d is a private exponent, such that for all x, x ∈ <0, N - 1> it holds that x = (xe mod
N)d mod N. We denote as k the length of the modulus N in bytes, i.e. k = (log2N)/8,
and the boundary B as B = 256k-2.

Definition 1 (PKCS-conforming plaintext). Let us denote the plaintext as P, P =
∑i=1

k(Pi*256k-i), 0 ≤ Pi ≤ 255, where P1 is the most significant byte of the plaintext. We
say that P is PKCS-conforming if the following conditions hold:

88

i) P1 = 0
ii) P2 = 2
iii) Pj ≠ 0 for all j ∈ <3, 10>
iv) ∃ j, j ∈ <11, k>, Pj = 0; the string Pj+1||...||Pk is then called as a message

M or a data payload

The definition describes the set of all valid plaintexts for the given modulus of the
length k bytes. In the case of SSL/TLS protocols, however, only the subset of this set
is allowed, since these protocols introduce several extensions to the basic PKCS#1 (v.
1.5) format. Therefore, we define the term S-PKCS-conforming plaintext as follows.

Definition 2 (S-PKCS-conforming plaintext). We say that P is S-PKCS-conforming
if it is PKCS-conforming and the following conditions hold:

i) Pj ≠ 0 for all j ∈ <3, k - 49>
ii) Pk-48 = 0

The main restriction introduced here is the constant number of data bytes (which is
equal to 48). The number of padding bytes equals k - 51. Furthermore, SSL/TLS
protocols introduce a special interpretation for the first two data bytes Pk-47 and Pk-46,
which are respectively regarded as major and minor version numbers. This
extension was introduced to thwart so-called version rollback attacks. The data
payload, which is the concatenation of Pk-47 || Pk-46 || Pk-45 || ... || Pk, is called a
premaster-secret here. It is the only secret used in the key derivation process that
produces the session keys used by the client and the server in the given session. An
attacker, who is able to discover the premaster-secret, can decrypt the whole
communication between the client and server which has been carried out in the
session. The value of Pk-45 || ... || Pk is generated randomly by the client who then adds
the version number Pk-47 and Pk-46, encrypts the whole value of the premaster-secret
by the server’s public RSA key, and sends the resulting ciphertext C to the server. The
server decrypts it and creates its own copy of the premaster-secret. All these steps are
carried out during the Handshake sub-protocol (c.f. §5).

It is widely known that the server shall not report whether the plaintext P, P = Cd
mod N, is PKCS-conforming or not. In practice, a server is recommended to continue
with a randomly chosen value of the premaster-secret if the value of P is not S-
PKCS-conforming. Obviously, the communication breaks down soon after sending a
Finished message (c.f. §5), since the client and the server will both use different
values for the session keys. However, the client (attacker) does not know whether the
communication has broken down due to an invalid format of P or due to incorrect
value of the premaster-secret. So, the attack is effectively defeated in this way. Of
course, the attacker still gains some information from such an interaction with the
server. She may at least try to confirm her guesses of the correct value of the
premaster-secret. However, it has been shown by Jonsson and Kaliski [4] that it is
infeasible to exploit this information for an attack.

Let us suppose that the server incorporates the above-mentioned countermeasure,
the primary aim of which is to thwart Bleichenbacher’s attack [1]. Furthermore, let all
S-PKCS-conforming plaintexts be processed by the server to check the validity of
proprietary SSL/TLS extensions according to the following proposition.

89

Proposition 3 (Conjectured server’s behavior).
i) The server checks if the deciphered plaintext P is S-PKCS-conforming.

If the plaintext is not S-PKCS conforming, the server generates a new
premaster-secret randomly, thereby breaking down the communication
soon, after receiving the client’s Finished message.

ii) The server checks each S-PKCS-conforming plaintext P to see whether
Pk-47 = major and Pk-46 = minor, where major.minor is the
expected version number which is known to the attacker (c.f. §5 for
details). For instance, the most usual version numbers at the time of
writing this analysis were 3.0 and 3.1. If the test fails, the server issues a
distinguishable error message. The test is never done for plaintexts that
are not S-PKCS-conforming.

Practical tests showed that it is reasonable to assume Proposition 3 is fulfilled in
many practical realizations of SSL/TLS servers.

Definition 3 (Bad-Version Oracle - BVO). BVO is a mapping BVO: ZN → {0, 1}.
BVO(C) = 1 iff C = Pe mod N, where e is the server’s public exponent, N is the
server’s modulus, and P is an S-PKCS conforming plaintext, such that either Pk-47 ≠
major or Pk-46 ≠ minor, where major.minor is the expected version number.
BVO(C) = 0 otherwise.

BVO can be easily constructed for any SSL/TLS server that acts according to
Proposition 3. We send the ciphertext C to the server and if we receive the
distinguished message from (ii), we set BVO(C) = 1. Otherwise, we set BVO(C) = 0.

Theorem 1 (Usage of BVO). Let us have a BVO for given (e, N) and major.minor
and let C be an RSA ciphertext. Then BVO(C) = 1 implies that C = Pe mod N, where
P is an S-PKCS-conforming plaintext.

Proof. Follows directly from Definition 3.
�

Because S-PKCS-conforming plaintext is also PKCS-conforming, it follows from
Theorem 1 that we can use BVO to mount Bleichenbacher’s attack. We discuss the
details in §3. Now we introduce several definitions that will be useful in the rest of
this part. We use a similar notation to the one used in [1].

Definition 4 (Probabilities concerning BVO). Let Pr(A) = B/N be the probability of
the event A that the conditions (i-ii) of Definition 1 hold for randomly chosen
plaintext P. Let Pr(S-PKCS|A) be the conditional probability that the plaintext P is S-
PKCS-conforming assuming that A occurred for P. Let Pr(BVO|S-PKCS) be the
conditional probability that BVO(Pe mod N) = 1 assuming that P is S-PKCS-
conforming.

For Pr(A) we have 256-2 < Pr(A) < 256-1 as stated in [1]. The probability Pr(S-
PKCS|A) can be expressed as Pr(S-PKCS|A) = (255/256)(k-51)*256-1, since the length
of the non-zero padding bytes must be equal to k-51. There is usually one value of the
version number that is expected by BVO (see §5). Therefore, Pr(BVO|S-PKCS) = 1-
256-2. Note that the value of Pr(BVO|S-PKCS)*Pr(S-PKCS|A)*Pr(A) is the probability
that for a randomly chosen ciphertext C we get BVO(C) = 1.

90

3. Attacking Premaster-secret

3.1 Mounting and Extending Bleichenbacher’s Attack

This attack allows us to compute the value x = yd mod N for any given integer y,
where d is an unknown RSA private exponent and N is an RSA modulus. This attack
works under the condition that an attacker has an oracle that for any ciphertext C tells
her whether the corresponding RSA plaintext P = Cd mod N is PKCS-conforming or
not. Theorem 1 shows that BVO introduced in the previous part can be used as such
an oracle. In the case of the SSL/TLS protocols this means that we can mount this
attack to either disclose a premaster-secret for an arbitrary captured session or to
forge a server’s signature. In the following text, we mainly focus on the premaster-
secret disclosure. Forging of signatures is discussed briefly in §3.4.

The main idea here is to employ Bleichenbacher’s attack with several changes
related to the specific properties of S-PKCS and BVO (§3.2). Furthermore, we
employed particular optimizations, which we have tested in our sample programs, and
which generally help an attacker (§3.3).

3.2 S-PKCS and BVO Properties

We show how to modify Bleichenbacher’s original RSA inversion algorithm for use
with the BVO and to increase its efficiency. For the sake of completeness we repeat
the necessary facts from [1] in the appendix together with a brief generalization of it.

Recall that PKCS-conforming plaintext P satisfies the following system of
inequalities

E ≤ P ≤ F,

where E = 2B, F = 3B–1, and B = 256k-2. The boundaries E, F are extensively used
through the whole RSA inversion algorithm. Since BVO as well as the SSL/TLS
protocols deal only with S-PKCS-conforming plaintexts, we may refine the
boundaries as

E' ≤ P ≤ F',

where the value of E' is obtained by incorporating the minimum value of the
padding and the value of F' is computed with respect to the fixed position of the zero
delimiter in the plaintext P:

E' = 2B + 1*256k-3 + 1*256k-4 + ... + 1*25649 = 2B + 25649(256k-51 - 1)/255 and

F' = 2B + 255*(256k-3 + 256k-4 + ... +25649) + 0 + 255*(25647 + 25646 + ... + 2560) =
3B – 255*25648 – 1.

Substituting E', F' in place of E, F in the original algorithm (see the appendix)
increases its effectiveness.

91

It follows from the technical details (c.f. §5) that the attacker knows the expected
value of the version number, which is checked by BVO. Therefore, when attacking
the ciphertext C0, such that BVO(C0) = 0, carrying the premaster-secret, the attacker
knows exactly the two bytes P0,k-47 and P0,k-46 of the S-PKCS-conforming plaintext P0
= C0

d mod N. She also knows that P0,k-48 = 0. We used this knowledge in our program
to further trim the interval boundaries <a, b> computed in step 3 of the algorithm (see
the appendix).

3.3 Basic General Optimizations

Besides the optimizations that follow directly from §3.2, we also used the generally
applicable methods described in the following subparagraphs.

Definition 5 (Suitable multiplier). Let us have an integer C. The integer s is said to
be a suitable multiplier for C if it holds that C' = seC mod N = (P')e mod N, where P'
is a S-PKCS-conforming plaintext.

3.3.1 Beta Method
The following method (β-method) follows from a generalization of the remark
mentioned in [1], pp.7 - 8.

Lemma 1 (On linear combination). Let us have two ciphertexts Ci and Cj, such that
Ci = (si)eC0 mod N, Cj = (sj)eC0 mod N, where si and sj are suitable multipliers for C0.
I.e. Pi = Ci

d mod N = 2B + 25649PSi + Di and Pj = Cj
d mod N = 2B + 25649PSj + Dj,

where 0 < PSi,j and 0 ≤ Di,j < 25648. Then for C, C = seC0 mod N and β ∈ Z, where s
= [(1-β)si + βsj] mod N, it holds that Cd mod N = P, such that P = [2B + 25649((1-
β)PSi + βPSj) + (1-β)Di + βDj] mod N.

Proof. It suffices to observe that P = [(1-β)si + βsj]P0 mod N = [(1-β)Pi + βPj] mod N,
where P0 = C0

d mod N.
�

It follows from the lemma written above that once we have suitable multipliers si,j
for a ciphertext C, we can try to search for the next suitable multiplier s as for a linear
combination of si and sj. In practice, we can try small positive and negative values of
β and test whether the particular linear combination s gives S-PKCS-conforming
plaintext or not. Working in this way, we may hope to accelerate the algorithm in step
2b (c.f. the appendix). Since we can reasonably assume that gcd(sj - si, N) = 1, there is
a particular value of β for every triplet of suitable multipliers (si, sj, s). However,
experiments have shown that there are also differences in how much information can
be obtained from such s depending on the size of β. For small values of β, it has been
observed that the obtained values of s do not reduce the size of Mi as fast as the values
of s obtained for β close to N/2. The reason is perhaps a linear dependency on Z,
which is stronger for small β. On the other hand, β close to N/2 clearly cannot be
directly found by "brute force" searching. More precisely, we may find such β
directly, but we cannot assure that obtained s will be of moderate size for further
processing by the RSA inversion algorithm. Therefore, it remains to extract as much
information as possible from reasonably small values of β and then to either continue

92

with incremental searching used in the original version of the algorithm [1] or to use
the Parallel-Threads (PT) method described in §3.3.2. In advance of the following
discussion, we note that the source for the next incremental searching or for the PT-
method is the maximum suitable multiplier sj found, such that sj < N/2.

When using the above-mentioned method with negative values of β, we may get a
multiplier s that is close to N (it can be regarded as a small negative value modulo N).
Such an s cannot be directly processed, since it induces a very large interval for r in
the original algorithm (see step 3 in the appendix). We will show how the algorithm
can be adjusted to process small positive values of s as well as small negative values
of s modulo N.

Theorem 2 (On symmetry). Let us have integers s, P, and N satisfying
E1 ≤ sP mod N ≤ F1, where E1, F1 ∈ Z.

Then there is the integer v, v = N - s, satisfying
E2 ≤ vP mod N ≤ F2, where E2 = N - F1, F2 = N - E1.

Proof. We have that vP mod N = (N - s)P mod N = (-sP) mod N = N - (sP mod N).
The upper boundary of (sP mod N) is F1, therefore, the lower boundary E2 of (vP mod
N) is E2 = N – F1. Analogically, the upper boundary F2 of (vP mod N) is given by the
lower boundary E1 as F2 = N – E1.

�
We use the theorem as follows: if we get a high value of s using the β-method

described above, then we convert it to the corresponding symmetric value v = N – s
which is then processed in a modified version of step 3 of the algorithm (see the
appendix). The core of the modification is using boundaries E2, F2 instead of the
original boundaries E1 = E', F1 = F' (c.f. §3.2).

3.3.2 Parallel-Threads (PT) Method
Recall that the complexity of step 2 of the algorithm (see the appendix) for i > 1
depends on the size of Mi-1. Generally, the step is expected to be much faster if |Mi-1| =
1 than if |Mi-1| > 1. The reason is that |Mi-1| = 1 means there is only one interval
approximating the value of P0 left and therefore certain rules can be used when
searching for the next suitable multiplier si. Experimenting with our test program, we
observed that even if |Mi-1| > 1, the number of intervals was usually small enough that
it was better to start a parallel thread T for each I ∈ Mi-1 as if it was the only interval
left, i.e. it starts its own thread in step 2c of the algorithm. These threads T1, ..., Tw,
where w = |Mi-1|, were precisely multitasked on a per BVO call basis. They were
arranged in the cycle T1→T2 ... →Tw→T1 and stepping was done in the cycle after
each one BVO call. The results obtained when thread Tj found a suitable multiplier
were projected on the whole current set of intervals for all threads. After that, the
threads belonging to the intervals that disappeared were discarded. We observed that
the PT-method increased the effectiveness of the original algorithm.

Using a certain amount of heuristics we set the condition that directs whether we
should use the PT-method or not. The PT-method is started in step i if the following
inequality holds

| Mi-1| < (2εPr(A))-1 + 1.

93

The value of ε estimates the number of passes it takes from the start of the PT-
method until there is only one interval left, i.e. |Mi+ε-1| = 1, where the PT-method
started in pass i. In our programs, we used ε = 2 which was the ceiling of the mean
value observed for ε.

3.4 Note on Forging a Server’s Signature

The BVO construction allows us to mount Bleichenbacher’s attack without any
restrictions on its functionality. As noted above, we can compute the RSA inverse for
any integer y, thereby obtaining the value x = yd mod N for the particular server’s
private exponent d and the modulus N. Discussing the so-called semantics of the
attack, there are only two cases in which it would be reasonable to compute this
inversion.

In the first case we compute the RSA inverse for a captured ciphertext carrying an
encrypted value of the premaster-secret. This approach allows us to decrypt the whole
communication that was carried out in a given session between a client and the server.
This is the main approach of our method, which we have practically tested and
optimized.

In the second case we compute an RSA signature of a message m on behalf of the
server. The whole attack runs in a similar way, which means that the main activity
between an attacker and the server is still concerned on the phase of passing the
premaster-secret value during the handshake procedure of the SSL/TLS protocols.
However, this is only because we need to build up a BVO (c.f. §2) for computing the
RSA inversion. The source of this inversion (the ciphertext C) will no longer be an
encrypted premaster-secret itself, but the formatted value of h(m), where h is an
appropriate hash function. Currently, the SSL/TLS protocols sets h(m) =def MD5(m) ||
SHA-1(m) and the value of h(m) is further formatted according to the EMSA-PKCS1-
v1_5 method from PKCS#1 ([9], [10], [12], [13], [17]). At the end of the attack we
obtain Cd mod N which is the signature of our input C. It further depends on the
keyUsage property [18] of the certificate of the server’s RSA key, whether such a
signature can be used for further attacks or not. At first the server’s RSA key must be
attributed for signing purposes. Secondly, it depends on the specific system as to how
far the faked signature is important, directly implying how dangerous the attack is.
From the basic properties of SSL/TLS ([10], [12]) it follows that such a signature may
be abused to certify an ephemeral RSA or D-H [11] public key of a faked server. The
faked server can then be palmed on an ordinary user to elicit some secret information
from her. Generally speaking, this would be an attack on the authentication of a
server. The necessary condition here is that the user is willing to use either the so-
called export RSA key or the ephemeral Diffie-Hellman key agreement [11]. The
practical situation is that some clients will - some clients will not. It strongly depends
on the attention paid to the configuration of such a client. Unfortunately, these
"minor" details are very often neglected in a huge amount of applications. Moreover,
we emphasize that the attack described here may not be the only one possible, since
the particular importance of a server’s signature depends on the role that the server
plays in a particular information system. The best way to avoid all these attacks is to

94

not attribute the server’s RSA key for signing purposes, unless it is absolutely
necessary.

From the effectiveness viewpoint, we can estimate that using the RSA inversion
based on BVO for signature forging will require more BVO calls, since we need to
insert an extra masking zero-step (see appendix, step 1 of the algorithm). The number
of additional BVO calls may be calculated as [Pr(BVO|S-PKCS)* Pr(S-PKCS|A)*
Pr(A)]-1, which is given by the probability that for a randomly chosen ciphertext C we
get BVO(C) = 1. Adding this value to the number of BVO calls in the former attack
on premaster-secret (c.f. §4) gives an estimate of the overall complexity of signature
forging.

4. Complexity Measurements

Basing on the elaboration from [1], we can estimate the number of BVO calls for
decrypting a plaintext C0 belonging to a S-PKCS-conforming plaintext P0 as

2*Pr(P)-1 + (16k - 32)*Pr(P|A)-1, where Pr(P|A) = Pr(BVO|S-PKCS)*Pr(S-PKCS|A),

Pr(P) = Pr(P, A) = Pr(P|A)*Pr(A),

where Pr(P) is the probability that for a randomly chosen ciphertext C we get
BVO(C) = 1.

This estimation does not cover the optimization described in §3.2 and §3.3.
Therefore we treat it as the worst-case estimation for a situation when these
optimizations are not notably helping an attacker. Experiments show that the
optimized algorithm is practically almost two times faster than this estimation (c.f.
§4.1) for the most widely used RSA key lengths. Let us comment on the expression of
the estimation now.

The first additive factor corresponds with our assumption that the attacker wants to
decipher C0 belonging to a properly formatted plaintext carrying a value of the
premaster-secret. In such a situation, she does not have to carry out initial blinding
(c.f. the appendix, step 1). According to [1], we can estimate that she needs to find
two suitable multipliers s1,2 for C0, until she can proceed with the generally faster step
2c. This gives the first factor as 2*Pr(P)-1. Note that, heuristically speaking, the
optimizations (§3) mainly reduce the necessity of finding s2 in the “hard” way,
thereby decreasing the first factor closely to the value Pr(P)-1. This hypothesis
corresponds well with the results of our measurements.

The second factor is a slightly modified expression presented in [1]. It corresponds
to the number of expected BVO calls for the whole number of passes through step 2c.
Recall that C0 = (P0)e mod N, where 2B ≤ P0 ≤ 3B – 1, so P0 lays in the interval of the
length B, B = 256k-2. Conjecturing that each pass through step 3 roughly halves the
length of the interval for P0, we may estimate that we need 8(k - 2) passes.
Furthermore, it is conjectured [1] that each pass through step 2c takes 2*Pr(P|A)-1
BVO calls. From here follows the estimation of BVO calls as (16k – 32)*Pr(P|A)-1.

Finally, we note that the complexity of the attack is mainly determined by the
amount of necessary BVO calls. This amount actually limits the attack in the three

95

ways. The first one is that an attacked server must bear such a number of corrupted
Handshakes (i.e. not collapse due to a log overflow, etc.). The second limitation
comes from a total network delay that increases linearly with the number of BVO
calls. The third limit is determined by the computational power of the server itself,
which mainly means how fast it can carry out the RSA operation with a private key.
Other computations during the attack are essentially faster and therefore we do not
discuss them here.

4.1. Simulated Local BVO

In this paragraph, we present the measured complexity of the attack with respect to
the total amount of BVO calls. The data of our experiment was obtained for the four
particular randomly generated RSA moduli of 1024, 1025, 2048 and 2049 bits in
length. For every such modulus we implemented a local simulation of BVO that we
linked together with the optimized algorithm discussed in this study. We then
measured the number of BVO calls for 1200 ciphertexts of the randomly generated
and encrypted values of the premaster-secret.

Due to the strong dependence of the number of BVO calls on Pr(A) we see that the
complexity of the attack is not strictly increasing with respect to the length of the
modulus N. This discrepancy was already mentioned in [1]. It follows that one should
use moduli with a bit length in the form 8r, where r is an integer, mainly avoiding the
moduli with the length 8r + 1.

Table 1. Basic statistics of a measured attack complexity in BVO calls

BVO calls
Practically measured

(with optimizations from §3)
Modulus

length
(bits)

Originally
estimated

without
optimization

Min Max Median Mean

1024 36 591 001 815 835 278 903 416 13 331 256 20 835 297

1025 979 488 630 589 105 122 011 1 197 380 1 422 176
2048 48 054 328 2 824 986 354 420 492 19 908 079 28 728 801
2049 2 794 937 1 413 005 475 298 397 3 462 557 3 896 432

Analyzing the measured data, we observed that the distribution of the amount of
BVO calls can be approximated by a log-normal Gaussian distribution, i.e. the
logarithm of the amount of BVO calls roughly follows a normal Gaussian
distribution. Heuristically speaking, this means that the most basic random events
governing the complexity of the attack primarily combine together in a multiplicative
manner. The values of median, mean, and variance are presented in Table 1. These
values were obtained using the log-normal approximation of the data samples
measured. These approximations are plotted in Fig. 1 and Fig. 2. We can see that all
the distributions skew to the right. Therefore, the most interesting values are perhaps
given by the medians. For example, in the case of a 1024 bits long modulus, we can
expect that the one half of all attacks succeed in less then 13.34 million BVO calls.
Furthermore, the data in Table 1 supports our conjecture that the optimizations

96

proposed in §3 mainly speed up the first “hard” part of the algorithm. Therefore, this
speeding up is clearly notable for moduli of 1024 and 2048 bits, while there is no
observable effect for the moduli of 1025 and 2049 bits.

Fig. 1. Log-normal approximation of BVO calls density functions for 1024 (higher peak) and
2048 bits long moduli

Fig. 2. Log-normal approximation of BVO calls density functions for 1025 (higher peak) and
2049 bits long moduli

4.2. Real Attack

We successfully tested the attack on a real SSL server (AMD Athlon/1 GHz, 256MB
RAM) using 1024 bits long RSA key. The total number of BVO calls for decryption

97

of a randomly selected premaster-secret was 2 727 042 and the whole attack took 14
hours 22 minutes and 45 seconds. It gives an estimated speed of 52.68 BVO
invocations per second. The server and the attacking client were locally connected via
a 100 Mb/s Ethernet network without any other notable traffic. With respect to the
whole conditions of this experiment, we can conclude that this is probably one of the
best practically achievable results. Therefore, we can expect that there would be few
practical attacks succeeding in less then 14 hours of sustained high effort (for a 1024
bits long RSA key). Using the value of the median for 1024 bits modulus from Table
1, we can roughly expect one half of all attacks in our setup to succeed in less than 70
hours and 18 minutes. For 2048 bits long RSA key in the same setup we get an
estimated speed of 11.47 BVO calls per second. Therefore, one half of all attacks
should then succeed in less than 21 days.

The experiment setup described above could be slightly improved by using a more
powerful server. Plugging in such a server (2x Pentium III/1.4 GHz, 1 GB RAM, 100
Mb/s Ethernet, OS RedHat 7.2, Apache 1.3.27), it was possible to achieve a speed of
67.7 BVO calls per second for a 1024 bits RSA key. The median time for a whole
attack on the premaster-secret could be then estimated as 54 hours and 42 minutes.
Note that all these estimates assume achieving and sustaining high communication
and computation throughput on the server’s side.

4.3. Real Vulnerability

To assess the practical impacts of the attack presented here, we had randomly
generated a list of 611 public Internet SSL/TLS servers (we accepted servers
providing SSL v. 3.0 or TLS v. 1.0) and then tested these servers to see whether it was
possible to construct a BVO for them or not. We found that two thirds of these servers
were vulnerable to our attack. We emphasize that it does not necessarily mean that the
attack would always succeed on every such server. Despite the fact that all these
servers can be regarded as broken from a pure cryptanalytic viewpoint, the
complexity of the attack may still render it impractical in a large amount of cases. We
expect that a properly administrated server (e.g. log messages are often inspected,
suspicious clients are added to black-lists, etc.) should withstand the attack. Under
such an administration, the attack should be recognized and the attacking client would
soon be blocked. Of course, the cryptographic strength of all these SSL/TLS
implementations should definitely be improved. We strongly recommend applying
appropriate patches as soon as possible.

We observed an interesting anomaly for 110 out of 611 tested servers. All of them
provided both SSL v. 3.0 and TLS. 26 of them were primarily vulnerable only
through the SLL v3.0 protocol, while the remaining 84 servers were primarily
vulnerable only through the TLS protocol. We advisedly used the word "primarily",
since if these servers share the same RSA key for both protocols, which is a very
common practice, then an attacker can easily assault one protocol through an
interaction with the other one. Moreover, the format of the ciphertext carrying the
premaster-secret is the same for both protocols, so this cross-attacking actually does
not increase the complexity of the whole attack.

98

5. Technical Details

In the SSL/TLS protocols, there are several sub-protocols that are used during
various stages of a connection ([10], [12]). The most interesting ones for our attack
are the Handshake and the Alert sub-protocols. The Handshake is used at the
beginning of each session and its aim is to establish symmetrical encryption keys for
that session. The SSL/TLS protocols allow various combinations of symmetrical and
asymmetrical cryptographic schemes which are called CipherSuites. Our attack
focuses on those CipherSuites that use the RSA algorithm for establishing
symmetrical session keys. These suites are used by a huge amount of contemporary
applications.

The messages exchanged between a client and a server during the Handshake and
their mandatory order are given on Fig. 3.

Client Server
ClientHello

ServerHello
*Certificate
*ServerKeyExchange
*CertificateRequest
ServerHelloDone

*Certificate
ClientKeyExchange

*CertificateVerify
[ChangeCipherSpec]

Finished

[ChangeCipherSpec]
Finished

Fig. 3. SSL/TLS Handshake

The messages marked with * are optional, however, they must be in their given
places if they are issued. The main purposes of the ClientHello message are
announcing supported CipherSuites and protocol versions together with presenting a
client’s random value used for the derivation of session keys. The server replies with
the ServerHello message in which it selects the CipherSuite and the protocol
version giving the highest possible security level for this session. In RSA-based
sessions, the ClientKeyExchange message carries an encrypted value of the
premaster-secret that was formatted to be S-PKCS-conforming before its encryption
(c.f. §2). The sequence of messages [ChangeCipherSpec] and Finished
denotes the end of the Handshake. Note that the ChangeCipherSpec is not
properly part of the Handshake sub-protocol [10], but it is an unimportant technical

99

detail here. The Finished messages are the first messages protected by the newly
negotiated CipherSuite and session keys. They also include a cryptographic checksum
of all the exchanged data that has been part of the Handshake sub-protocol. The
checksum is computed using the PRF method [10] under the new session keys. Under
normal operation, the Handshake sub-protocol passes to the Application Data sub-
protocol, which serves as a transparently secured data pipe between the client and the
server. The connection may return to the Handshake phase later on whenever the
client decides to start a new session (the current session is then closed). We note that
our attack is entirely focused on analyzing the first session in a captured connection.
The second and next sessions will have their Handshakes encrypted under the keys
belonging to their “parent” session. It is still possible to decrypt these sessions
however, the attacker must do this on a session-by-session basis starting from the first
one.

Possible fatal errors and warnings arising during SSL/TLS communication are
reported using the Alert sub-protocol. Its messages transparently flow between
packets of other sub-protocols. Once the session is well established, the Alert
messages are also cryptographically protected.

5.1 Constructing BVO

From the technical viewpoint, each BVO(C) call means starting a new RSA-based
session with the Handshake described above. The attacker does mainly the following:
she asks for an appropriate RSA-based session, sets the version number in the
ClientHello (c.f. §5.2), and incorporates the challenge C into the
ClientKeyExchange message. She completes the Handshake using the session
keys derived for a randomly guessed value of the premaster-secret'. Then she waits
for the server’s reaction, which will be sent using the Alert sub-protocol. The core of
her approach is based on the Alert message she gets. The attack relies on the
possibility of identifying the case in which the decrypted plaintext P, P = Cd mod N,
is S-PKCS-conforming with a bad version number. For example, the OpenSSL
implementation [7] sends the "handshake failure" (for SSL v. 3.0) or "decode error"
(for TLS v1.0) Alert message in such a situation. This message is unencrypted, since
the session has not been set up yet, and it precisely distinguishes the situation
described above from other possible erroneous states at the end of the Handshake. We
note that the Alert message may not be the one and only way in which the BVO can
be constructed. There may be other side channels that allow a BVO construction for
instance, a timing side channel. The use of this side channel in connection with a
SSL/TLS server was already demonstrated in a different attack [2].

5.2 Version Number

According to the version number included in the premaster-secret, the documents
[10], [12] say the following: "Upon receiving the premaster-secret, the server should
check that this value matches the value transmitted by the client in the

100

ClientHello message" (c.f. [12], p. 44). However, Rescorla noted (c.f. [10], p. 79)
"...but in practice many clients use the negotiated version instead...". So, there may be
two correct values of the version number for the given Handshake. As may be
expected, from a pure cryptological point of view, the situation becomes a bit messy
when moving from theory to a practice. It solely depends on the particular server
whether it requires the version number to be set to the value offered in
ClientHello (type-I server) or if it allows this value to be also set to the
negotiated version from ServerHello (type-II server). However, such a situation
may be checked before an attack and the particular behavior of the server may be then
well estimated. With this knowledge, we can construct a BVO so that there is only
one correct value of the version number expected. If the server is of type-I then there
is no problem with this. If it is of type-II then all we have to do is to find the setting
under which the version number negotiated in ServerHello becomes the same as
the number offered in ClientHello. Then the server behaves exactly like a server
of type-I.

We can also use the version number that is known from the ClientHello and
ServerHello to narrow the size of intervals searched for in the attack (c.f. §3.2).

First, we compare the version numbers from ClientHello (ver1) and
ServerHello (ver2) belonging to the Handshake of the analyzed session. If they
are the same, then this common value must also have been included in the premaster-
secret. If these values are different then we change the value in ClientHello so
that the value chosen by the server would not change. We start a new session using
this ClientHello message. In place of the ClientKeyExchange we use
directly the ClientKeyExchange from the analyzed session. If the server
terminates the connection due to a bad version number, then we know that there is
ver1 in the attacked premaster-secret. Otherwise, it is ver2.

6. Countermeasures

Due to the compatibility demands, it does not seem possible to simply leave the EME-
PKCS1-v1_5 method and use its successor EME-OAEP. Note that even the EME-
OAEP method must be implemented carefully (c.f. [5], [6]). On the other hand, it has
been recently shown by Jonsson and Kaliski in [4] that the EME-PKCS1-v1_5 can
offer reasonable security (the proof was carried out for the TLS protocol) assuming
that it is implemented properly – i.e. mainly that side channels are avoided. What
remains is to show what a proper implementation should look like. The current
guidelines in [12] together with [15] are obviously insufficient and should be updated
to avoid weaknesses like the one discussed in this analysis. Moreover, it seems that
the edge between secure and insecure implementation of EME-PKCS1-v1_5 is very
sharp. This implies that the standards regarding its implementation must really be
very precise.

101

6.1 Promising Countermeasures which Are Cryptographically Odd

The following countermeasures can hinder our attack, but each one exposes at least a
theoretical cryptographic weakness.

6.1.1 Testing Randomly Generated Payload
It may be a tempting idea to introduce the following general countermeasure: at

first, the plaintext P being decoded is checked to see if it is S-PKCS-conforming. If it
is not, then the data payload Pk-47 || ... || Pk is randomly generated from scratch.
Therefore, at the end of the first phase, we should have a data payload, no matter how
it was obtained - whether by extracting or by random generating. The data payload
would then be the subject of all successive checks, especially the version number test.
Note that with a little effort, this countermeasure can be read between the lines on
page 44 of RFC 2246 [12].

We will show that such a countermeasure is not cryptographically good, since the
successive checks work on small parts of the data payload. By examining a sequence
of Handshake invocations, we can distinguish whether the server generates the
payload randomly or if it uses the result of decoding a properly formatted plaintext P.
Thereby, we know if the original plaintext P is S-PKCS-conforming or not.

In our attack, such a countermeasure would mean that an attacker has to change her
strategy. Now, there is a high probability that a randomly chosen ciphertext C gives a
bad version number. The attacker will generate random C and wait until the server
responds that the version number is correct. With this result she still does not know
whether P = Cd mod N is a correct S-PKCS-conforming plaintext (with a correct
version number) or if the version number was accidentally correct in the random
payload. However, she can decide between these two variants by sending the same C
again. If it again gives the correct version number, then it is highly probable that P is
S-PKCS-conforming, since the probability that a consecutive randomly generated
payload again gives the correct version number is close to 256-2 here. The probability
that even a third consecutive invocation gives the correct version number, given that
P is not S-PKCS-conforming, is close to 256-4, etc. Let us say that she would always
carry out these two checking invocations for each ciphertext of a possibly S-PKCS-
conforming plaintext. If X denotes the number of necessary oracle calls in the BVO-
attack, then she needs approximately X*(216+2) oracle calls now. Using only one
control invocation gives the estimate as X*(216+1) oracle calls. We note that even this
generally low complexity may successfully thwart the attack in many practical
implementations. On the other hand, such a protocol still cannot be regarded as
cryptographically secure.

6.1.2 Treating the Version Number as a PKCS Mark
Another seductive countermeasure is to regard a failure of the version number check
as a failure of EME-PKCS1-v1_5 decoding. Therefore, seeing an incorrect PKCS#1
format or an incorrect version number, the server would randomly generate new data
payload Pk-47 || Pk-46 || ... || Pk and continue with it through the rest of the Handshake
(of course omitting the version check). Such a countermeasure would effectively
thwart the attack described here.

102

This countermeasure is nearly perfect but we have to note that there are some
weaknesses, even if they are highly theoretical and impractical yet. The first
disadvantage is that an attacker can change the formatting rules at her will by
changing the expected version number (c.f. the role of ClientHello in §5.2). Let
C be a ciphertext corresponding to an S-PKCS-conforming plaintext P, i.e. C = Pe
mod N. Manipulating the expected version number, the attacker can force a server to
either accept or reject C, where “to reject C” means to generate a random payload
instead of using the data payload from P. The attacker can do that even when P is
unknown. Now, let us consider that the server is implemented as a small electronic
device (e.g. as a chipcard, embedded module, etc.) allowing the attacker to listen to
power or electromagnetic side channels. Then the attacker may, for example, try to set
up a distinguisher ∆, ∆: (C, v1, v2) → δ, where δ ∈ {0, 1, 2}, C is a ciphertext and v1,
v2 are different version numbers. If δ ∈ {1, 2}, then it means that the ciphertext C is
accepted under the expected version number vi, i = δ, while it is rejected under vj, j =
3 - i. Otherwise δ = 0. A possible way of building ∆ is to seek for correlations
between the samples of a side channel signal captured at the time of the RSA
decryption and the premaster-secret processing. For illustration, let us assume that the
correct answer is δ ∈ {1, 2}. The signals set {Si} obtained for C sent under the
version number vi, i = δ should then be mutually correlated at some points due to the
same value of the premaster-secret processed (since C is valid under vi, the data
payload from P will always be used for the premaster-secret). On the other hand, the
signals set {Sj} obtained for C under vj, j = 3 – i should be significantly less correlated
for a particular subset of these points, since the premaster-secret is generated
randomly for each invocation. However, since the ciphertext C and the corresponding
plaintext P stay always the same, there should be points where the signals {Sj} are
still correlated. Therefore, the attacker can compare the correlations among signals
{Si} with the correlations among {Sj} and estimate a probable correct value of δ. If
the behavior of the signals analyzed does not correspond with this model, the attacker
places δ = 0 (i.e. distinguishing was impossible). Such an analysis is possible mainly
due to the free control of acceptance rules for C and this is the reason why we
conjecture that the countermeasure discussed here may be considerably susceptible to
side channel attacks.

Once the attacker has ∆, she can perform an attack, which is in fact similar to the
attack described in §6.1.1. Let us assume that v1, v2 are two different constants which
are carefully selected and remain the same during the attack. To confirm that a given
ciphertext C corresponds to an S-PKCS-conforming plaintext P, the attacker invokes
∆ as δ = ∆(C, v1, v2). If δ ∈ {1, 2}, then the attacker knows that P is S-PKCS-
conforming (and, furthermore, that it was accepted under either v1 or v2). Otherwise,
the attacker continues searching for next C. Let X denote the number of necessary
oracle calls in the BVO-attack and let T∆ denote the number of server calls for one
invocation of ∆. Then we may estimate that the attacker would need approximately Z
= X*T∆*215 server calls in total. The factor 215 corresponds with the probability that a
randomly chosen S-PKCS-conforming plaintext gives the version number v1 or v2. If
we assume that 1 < T∆ < 256, then we have X*215 < Z < X*223. Although such a
complexity would probably thwart the attack, it should not be totally neglected from a
general point of view.

103

Second theoretical threat is in the following: Suppose that the attacker has a
ciphertext C, such that C = Pe mod N for an S-PKCS-conforming plaintext P, and at
the same time she already knows µ = Pk-45 || ... || Pk. Then she can discover the values
of Pk-47 and Pk-46.

She does so by sending the ClientHello (ver) messages for different versions
ver according to her choice together with the ciphertext C in the
ClientKeyExchange message. She sends these messages until the server uses the
premaster-secret from P. Since she knows the rest of the premaster-secret, she can
compute Finished message correctly. When the server accepts her Finished
message, she hit the correct version ver, originally unknown to her. From a purely
cryptographic viewpoint, such a property should be avoided.

The approach described above is recommended by Rescorla ([10], p. 170), who
attributes it to RFC 2246 [12]. However, from a closer cryptographic examination, it
may seem that RFC 2246 rather recommends the measure from §6.1.1. Evidently, this
is another reason why this standard deserves a certain amount of additional
explanation.

6.2 Countermeasure which Is Both Practically and Cryptographically Bearable

Demands: Recall that a good countermeasure should mainly:
i) ensure that tampering with the version number is detected,
ii) hide partial information about the RSA plaintext being decoded as much

as possible,
iii) not allow new attacks.

Proposal: Under these demands, we propose processing the ciphertext C from the
ClientKeyExchange message to get the premaster-secret as follows:

i) decrypt C on P as P = Cd mod N
ii) check if P is S-PKCS-conforming, if it is not, replace the values Pk-45 ...

Pk by 46 bytes of random data
iii) in any case securely discard P1 ... Pk-48
iv) in any case replace Pk-47 and Pk-46 by the expected major and minor

version numbers, respectively (c.f. §5.2)
v) set premaster-secret = Pk-47 || ... || Pk

The server may optionally check the version number from the original plaintext P
against the expected values and log the result of this test. It may also log the check
result from step (ii). However, all these logs should then be regarded as sensitive
values. Note that this countermeasure may also be attacked when the information on
the checks leaks out (directly or indirectly) through side channels. Despite of giving
attackers perhaps less prominent chances than the countermeasure §6.1.2, the threat of
side channels must not be underestimated, since they may still allow devastating
attacks here.

There is a minor problem relating the tolerant type-II servers (c.f. §5.2) in that such
a server will do the substitution in step (iv) twice, since two values are expected for
the version number. It also means that the server must compute two premaster-secrets
as well as sets of session keys and hold them until seeing the client’s Finished.

104

After then the server decides which one should be used and which one can be
discarded.

We conjecture that the countermeasure presented above meets our demands. To
support this hypothesis, we present the following arguments.

Let us consider tampering with a version number so that the offered number from a
client is not the one received by the server. Such tampering will be detected after
exchanging Finished messages, since the client and the server will both use
different values of the premaster-secret. We may reasonably assume that it would be
infeasible for an attacker to also tamper with these Finished messages, which do
not only carry a cryptographic checksum, but are also protected using session keys
derived from the premaster-secret.

According to the server’s behaviour proposed above and the possible chosen
ciphertext attack, an attacker is only able to try to distinguish whether the server uses
a random or the original value of the premaster-secret in step (ii). Assume the
attacker has a ciphertext C, where C = Pe mod N. Let us denote µ = Pk-45|| ... || Pk.

• If she does not know the value of µ, she cannot get any new notable partial
information about P, since she is unable to distinguish whether the server
uses a random or the original (version number || µ) value of the premaster-
secret.

• If she knows the value of µ, she has an oracle Oµ: ZN → {0, 1}, so that Oµ (C)
tells her whether C decrypts to a S-PKCS-conforming P or not. In this way
she gets certain partial information about the plaintext of this specific
ciphertext C. Such information does not seem to be of notable merit provided
she can only get it for some singular ciphertexts. For instance, she cannot
learn the exact values of Pk-47 and Pk-46 as in §6.1.2, since the server does not
use the values Pk-47 and Pk-46 in any way. Let us assume that the attacker is
able to use Oµ (C) for any ciphertext C. This means that she can know the
appropriate value of µ for every such ciphertext. From here and the theorem
of RSA individual bits [3], it follows that she can invert the RSA permutation
x → (y = xe mod N) for any integer y. Proof of the reduction from a partial-
RSA problem to a gap-RSA-P1 problem in [4] even shows an optimized
algorithm for such an inversion (see [4], appendix A, proof of Lemma 1). It
follows that getting the possibility of routine Oµ usage (i.e. “un-keying” it for
any C) is as hard as inverting the whole RSA. Therefore, we conjecture that
leaking partial information about P is minimized.

From step (iv) it follows that an active attacker can use messages from a captured
session to tamper with the server using various version numbers for the premaster-
secret. However, all she can do is to make the server set Pk-47 and Pk-46 at arbitrary
values of her choice (using ClientHello, see §5.2) and then wait to see if the
server accepts a tampered content of Finished belonging to the captured session.
With regard to how the computation of Finished together with the derivation of
session keys are carried out ([10], [12]), one can hardly expect that successful attacks
would be constructed in this way.

105

7. Conclusions

We have presented a new practically feasible side channel attack against the
SSL/TLS protocols. When Bleichenbacher presented his attack on PKCS#1 (v. 1.5) in
1998 [1], it was generally assumed that the attack was impractical for the SSL/TLS
protocols, since these protocols add several proprietary restrictions on the plaintext
format, which increase the complexity of the attack. Of course, the protocols could
not be called secure from a pure cryptographical viewpoint. Therefore, a special
countermeasure was introduced and generally adopted [10], [12]. However in this
chapter, we have shown that problems with Bleichenbacher’s-like attacks on the
SSL/TLS protocols are still not properly solved. We have identified a new possibility
of a substantial side channel occurring during an SSL/TLS Handshake. The side
channel originates when a receiver checks a version number value stored in the two
left-most bytes of the premaster-secret. Based on the receiver’s behavior during this
check, we have defined its mathematical encapsulation as a bad-version oracle (BVO,
c.f. §2). Such a check is widely recommended for SSL/TLS servers, but unfortunately
it is not properly specified how it should be performed. Practical tests showed that
two thirds of randomly chosen Internet servers carried out the test wrongly, thereby
allowing the construction of BVO resulting in a new attack on RSA-based sessions.
The attack itself may be viewed as an optimized and generalized variant of the
original Bleichenbacher’s attack [1]. The most obvious target of our attack would
probably be discovering the premaster-secret, thereby decrypting a captured RSA-
based session. It is also possible (with an additionally increased complexity, c.f. §3.4)
to compute the signature of any arbitrary message on behalf of the server.

The attack was carried out in practice and its efficiency was measured (§4). The
amount of time the attack takes in practice is mainly determined by the amount of
BVO calls. Each BVO call corresponds to one attempt to establish a SSL/TLS
connection with an attacked server. If the server uses a typical 1024 bits long RSA
key, then we can expect that roughly 50% of attacks succeed in less than 13.34
million BVO calls. For a practical estimation, the particular server speed must be
known. For instance, in one of our testing setups we achieved a speed that allowed us
to expect that 50% of attacks succeeded in less then 54 hours and 42 minutes. This
load may be further spread as 2 hours of these interactions per day, thereby spreading
the whole attack over roughly one month, etc. The attack is not limited to running on
a single computer, so it can be distributed. The main aim would not be speeding up
the attack, but making its localization and blocking harder. Although the complexity
presented here is definitely very low from a pure cryptographic viewpoint, there may
still be technical measures that can thwart the attack in a practice. For instance, each
BVO call should produce at least one log record on the server’s side. If these logs are
well maintained and appropriately inspected, then the attack should be recognized in
time. Unfortunately, there also seem to be poorly administrated servers where
SSL/TLS audit messages are almost ignored. These servers remain protected solely
by their network and computational throughput, which is obviously alarming.

Finally, we conclude that even those well-administrated servers should be patched
to thwart the attack in a primarily cryptographic rather than a pure technical way. For
this case, we have discussed various possible countermeasures in §6. There are three
countermeasures presented the strength of which can be commented on as follows.

106

The measure §6.1.1 is obviously weak and should be avoided. The measure §6.1.2
thwarts our attack effectively, however, it still leaves a weakness (even though it is
purely theoretical). The third countermeasure presented in §6.2 seems to be both
cryptographically and practically optimal. However, for those implementations that
are already using the measure from §6.1.2, we do not think it is necessary for them to
immediately follow §6.2. This should be used mainly in new implementations of the
SSL/TLS protocols.

References

1. Bleichenbacher, D.: Chosen Ciphertexts Attacks Against Protocols Based on the RSA
Encryption Standard PKCS#1, in Proc. of CRYPTO '98, pp. 1 - 12, 1998

2. Canvel, B., Hiltgen, A., Vaudenay, S., and Vaugnoux, M.: Password Interception in
a SSL/TLS Channel, In proc. of CRYPTO ‘03, pp. 583-599, 2003

3. Håstad, J. and Näslund, M.: The Security of Individual RSA Bits, in Proc. of FOCS
'98, pp. 510 - 521, 1998

4. Jonsson, J. and Kaliski, B.-S., Jr.: On the Security of RSA Encryption in TLS, in Proc.
of CRYPTO ‘02, pp. 127 -142, 2002

5. Klíma, V., Rosa, T.: Further Results and Considerations on Side Channel Attacks on
RSA, in Proc. of CHES '02, August 13 - 15, 2002

6. Manger, J.: A Chosen Ciphertext Attack on RSA Optimal Asymmetric Encryption
Padding (OAEP) as Standardized in PKCS #1, in Proc. of CRYPTO’01, pp. 230-238,
2001

7. OpenSSL: OpenSSL ver. 0.9.7, http://www.openssl.org/, December 31, 2002
8. PKCS#5 v2.0: Password-Based Cryptography Standard, RSA Laboratories, March

25, 1999
9. PKCS #1: RSA Encryption Standard, An RSA Laboratories Technical Note, Version

1.5, Revised November 1, 1993
10. Rescorla, E.: SSL and TLS: Designing and Building Secure Systems, Addison-

Wesley, New York, 2000
11. RFC 2631: Rescorla, E.: Diffie-Hellman Key Agreement Method, June 1999
12. RFC 2246: Allen, C. and Dierks, T.: The TLS Protocol, Version 1.0, January 1999
13. RFC 1321: Rivest, R.: The MD5 Message-Digest Algorithm, April 1992
14. Rivest, R., L., Shamir, A., and Adleman, L.: A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems, Communications of the ACM, 21, pp.
120-126, 1978

15. RSA Labs: Prescriptions for Applications that are Vulnerable to the Adaptive Chosen
Ciphertext Attack on PKCS #1 v1.5, RSA Laboratories,
http://www.rsasecurity.com/rsalabs/pkcs1/prescriptions.html

16. Schneier, B. and Wagner, D.: Analysis of the SSL 3.0 Protocol, The Second USENIX
Workshop on Electronic Commerce Proceedings, USENIX Press, November 1996,
pp. 29 - 40

17. Secure Hash Standard, FIPS Pub 180-1, 1995 April 17
18. X509: ITU-T Recommendation X.509 (06/97) - Information Technology - Open

System Interconnection - The Directory: Authenticantion Framework, ITU, 1997

107

Appendix

For the sake of completeness we enclose here the algorithm from [1]. For our
purposes we define directly a slight generalization and modification of it. Recall that
in the original text E = 2B, F = 3B–1, where B = 256k-2. In our variant, we will use the
refined values E' and F' (c.f. §3). According to Definition 1 and the original notation
used bellow, we note that a ciphertext C is said to be PKCS conforming iff C = Pe
mod N, where P is PKCS-conforming plaintext. The modified algorithm is as follows.

Step 1: Blinding. Given an integer c, choose different random integers s0; then check,

by accessing the oracle, whether c(s0)e mod N is PKCS conforming.
For the first successful s0, set

c0 ← c(s0)e mod N
M0 ← {[E, F]}

i ← 1.
Step 2: Searching for PKCS conforming messages.

Step 2.a: Starting the search. If i = 1, then search for the smallest positive
integer s1 ≥ N/(F+1), such that the ciphertext c(s1)e mod N is PKCS
conforming.

Step 2.b: Searching with more than one interval left. Otherwise, if i > 1 and
the number of intervals in Mi-1 is at least 2, then search for the smallest
integer si > si-1, such that the ciphertext c(si)e mod N is PKCS conforming.

Step 2.c: Searching with one interval left. Otherwise, if Mi-1 contains exactly
one interval (i.e. Mi-1 = {[a, b]}), then choose small integer values ri, si such
that

ri ≥ 2(bsi-1 - E)/N 
and

(E + riN)/b ≤ si < (F + riN)/a
until the ciphertext c(si)e mod N is PKCS conforming.

Step 3: Narrowing the set of solution. After si has been found, the set Mi is
computed as

Mi ← » (a,b,r) {[max (a, (E + rN)/si), min (b,  (F + rN)/si )]}
for all [a, b] ∈ Mi-1 and (asi - F)/N ≤ r ≤ (bsi - E)/N.

Step 4: Computing the solution. If Mi contains only one interval of length 1 (i.e., Mi
= {[a, a]}), then set m ← a(s0)-1 mod N, and return m as solution of m ≡ cd (mod
N). Otherwise, set i ← i + 1 and go to step 2.

108

G. Key-collisions in (EC)DSA: Attacking Non-
repudiation*

1. Introduction

The service of non-repudiation is one of the most basic cryptographic goals [12]. The
commonly agreed definition of this service says that: The non-repudiation property of
a given action allows an independent third party to make sure that a particular event
did (or did not) occur [10]. Note that the independent party is typically a judge. Such
a property is of a great importance for applications where cryptographic mechanisms
enter an area of law. A good example of such a service is the introduction of
electronic signature standards and laws ([3], [4]), which is an ongoing activity
through the whole world. There are also other areas where the non-repudiation plays
an important role, for instance we may refer to asymmetric traitor tracing schemes [9],
which achieve their non-repudiation by using signature schemes having this property.
All these examples show that contemporary cryptographic mechanisms must not only
protect data, but also be judiciously sound.

In this chapter, we show an approach which can be used to break the non-
repudiation service in systems which are based on the (EC)DSA [6] signature
schemes. The main idea behind our attack may be called an “alternative
explanation”. This is a familiar and effective way in which a signature may be
denied. An attacker constructs the alternative explanation that argues that there is the
(mathematically) valid signature, while she claims that she has never signed the
document presented at the court. Such an argument is then presented to the judge. We
should note, that the provable mathematical connection between document signing
and signature verification is that proper signing implies verifying the signature as a
valid one. Proving this implication in the opposite direction, i.e. that verifying the
signature as a valid one implies that the document was properly signed before, is
somewhat tricky. In most schemes, this “proof” is just based on that there is no sound
alternative explanation of why the verification procedure says that the signature is
valid. Then, presenting such an alternative explanation means that the trial must be
tried basing on other evidences, what may at least be very inconvenient. Therefore, a
possibility of the alternative explanation existence should be minimized, especially on
the elementary mathematical level. A well-known way to get the alternative
explanation is to exploit collisions of a hash function used in the signature scheme.
The attacker then claims that she has signed a different message, instead of that
message presented at the court. Such a threat is well recognized and an adequate
attention is usually paid to collision resistance of hash functions in signature schemes.

* An extended version of the research note presented as Rosa, T.: On Key-collisions in

(EC)DSA Schemes, CRYPTO 2002 Rump Session, IACR ePrint archive 2002/129, Santa
Barbara, USA, August 2002. Preliminary version of the paper won the best presentation
award on the Czech cryptologic workshop VKB 2002 [14].

109

Apparently, some attention is also paid to the inner collision resistance of the
signature transformations ([17], [18]). In this chapter, we show that it is also possible
to get a collision of public keys (more precisely of public signature scheme instances),
which we refer to as a key-collision (k-collision, c.f. §2 for the definition). Then, the
alternative explanation says that it was someone else who has signed that message. A
straightforward decision that users have both signed this message would not be
proper, likewise we do not accept the decision that the user has signed both messages
in the case of the message-collision (m-collision). Moreover, there may be cases
where it is logically impossible for two users to have signed the given message. For
instance, the signature scheme may be employed in an authentication service which
disallows more than one user to be authenticated at the same time.

It is easy to see that m-collisions and k-collisions both weaken the non-repudiation
property according to the definition stated above. It is worth to note again (c.f. [17])
that attacks on the non-repudiation may expose surprising weaknesses, since it is
often a private key owner who plays the role of an adversary here. However, we
usually tend to view such a person as the honest user who is a prime target of
malicious attackers, and therefore she must be protected using all accessible means.

In the following text, we show a formal definition of the term k-collision (§2), then
we introduce the notion of GDSA (§3), which is a general construction that
encapsulates elementary common algebraic properties of DSA and ECDSA. Besides
allowing us to study our subject for both schemes at the same time, it also
demonstrates the generality of properties which allow us to search for k-collisions
effectively. A concrete algorithm for k-collision searching is presented in §4 then.
Section §5 shows basic limits of k-collision computation for (EC)DSA. Use of this
observation is made in §6, where general countermeasures are introduced. Some
heuristic remarks that did not fit elsewhere are summarized in §7 as possible
inspirations for further research. Finally, we conclude in §8.

Proposition 1.1. Unless stated otherwise, the term “breaking a signature scheme
(instance)” means an ability to compute a private key only from publicly known
values (i.e. a public key, message signatures, etc.).

Proposition 1.2. Unless stated otherwise, the elements of Zn will be regarded as the
lowest positive integers representing particular equivalence classes in Zn.

Proposition 1.3. In case it is clear from a context, we will shorten a notation of
indexed variables according to the following example: xA, xB →written as xA,B.

2. K-collisions – Definitions

Definition 2.1. We write as (Pub, m, S)ρ the relation ρ saying that S is a valid
signature of the message m under the public signature scheme instance Pub.

The term public instance and the structure of S are defined in §3. It suffices to
understand them heuristically through a general meaning here.

Definition 2.2 (k-collision). The five-tuple (PubA, mA, PubB, mB, S), where PubA and
PubB are public instances of a signature scheme, mA and mB are messages and S is a

110

signature, form a k-collision if the following holds: PubA ≠ PubB, (PubA, mA, S)ρ and
(PubB, mB, S)ρ. Furthermore the public instances PubA,B, messages mA,B, and their
signature S are referred to as k-colliding public instances, k-colliding messages and
k-colliding signature respectively.

Definition 2.3 (1st and 2nd order k-collision). We use the term 1st order k-collision to
refer to the k-collision, where mA = mB. We use the term 2nd order k-collision to refer
to the k-collision, where mA ≠ mB.

The sets of all 1st order and 2nd order k-collisions decompose the set of all k-
collisions for a given signature scheme. In this contribution, we study algorithms
which can be used for the purpose of k-collision searching. The following definition
introduces the basic properties of such algorithms.

Definition 2.4 (k-collision searching algorithms properties).

i) We say that an algorithm is non-cooperative if it finds a k-collision for a
given public signature scheme instance PubA, a k-colliding message mA,
and a signature S, such that (PubA, mA, S)ρ, without needing any further
information which is not publicly accessible. We say that the algorithm
is cooperative, otherwise.

ii) An algorithm for k-collision searching is message-independent if it
allows the k-colliding messages mA,B to be pre-set to arbitrary strings.

iii) An algorithm is proper if it does not disallow respective owners of k-
colliding public instances PubA,B to know their relevant private keys.
I.e., we may assume that the owner of PubA knows PrivA and the owner
of PubB knows PrivB.

Non-cooperative algorithms have a special importance here, since they allow an
attacker to do so-called signature stealing. Using such an algorithm, the attacker may
pretend to have signed an important document which has actually been signed by
someone else. The real author of the signature does not have to provide any secret
information to the attacker, so the attacker “steals” her signature. There are practical
cases in which such an attack brings some benefits to the attacker, for instance,
bypassing an authorship proving service.

A message-independent algorithm for k-collision searching can be used to search
for both 1st order and 2nd order k-collisions. Furthermore, it is reasonable to require
such an algorithm to be proper in case the judge requests the respective owners of
PubA,B to prove that they know their respective private keys. Therefore, we focus on
the design of a proper message-independent non-cooperative algorithm for k-collision
searching. Such an algorithm is described in §4.

2.1 Illustrative example of a practical attack

The notion of k-collisions directly supports the discussion given in [11]. Is has been
observed there, that a timestamp of a document signature cannot be, generally
speaking, considered as a timestamp of the document itself. To show that, authors

111

actually demonstrated that 2nd order k-collision searching is feasible for RSA. Their
method was based on the idea of solving an equation md mod n = s for d, provided
that s and m are given and an attacker can arbitrarily choose the value of n
(representing RSA modulus). Authors suggested constructing n in such a way that the
discrete logarithm problem is easily solvable. However, this selection would be
probably easily visible and would render the whole RSA key useless. In the case of
(EC)DSA, we will show that we do not need to make such special constructions, so
the colliding keys do not impose obvious marks of an attack and can be deployed for
practical signing as well. Therefore, we may regard schemes based on DSA to be
somehow more vulnerable to the attack presented in [11] than RSA (c.f. also §7
bellow).

Furthermore, let us imagine the following scenario: There is a scientific conference
whose potential participants are requested to submit anonymous papers. To thwart
cheating, each researcher must also append a string of her digital signature of the
paper. Let us assume that only the signature is appended, not a public key. I.e. using
the above-mentioned notation, researcher A sends paperA and S from a triplet (PubA,
paperA, S)ρ. When the paper is accepted and or a disputation occurs, the researcher
must prove that she owns the proper verification/signing keys, i.e. that S is her proper
signature. This should prevent changing the author and or the content of the paper
later on. However, it would not work, when it is possible to construct k-collisions. For
instance, having a k-collision (PubA, paperA, PubB, paperB, S), such that paperA =
paperB, user B may pretend to be the author of the paper. Moreover, if it is possible to
compute the k-collision non-cooperatively, then user B can do so without an
agreement with user A.

What follows is that we cannot take the signature string S in itself as a fingerprint
of the document content (paperA) and the identity of the signatory (PubA). Only the
full triplet (PubA, paperA, S)ρ can be used for such a purpose. In the aforesaid
example, we actually did a demonstration of a possible protocol weakness which is
analogical to the vulnerability discussed in [11]. Therefore, we may consider the
whole notion of k-collisions as a platform for generalization of these attacks.

2.2 Another example

In the European Electronic Signature Standardization Initiative [3], there is a term
advanced electronic signature which is defined in the following way: electronic
signature which meets the following requirements: a) it is uniquely linked to the
signatory; b) it is capable of identifying the signatory; c) it is created using means
that the signatory can maintain under his sole control; and d) it is linked to the data
to which it relates in such a manner that any subsequent change of the data is
detectable (see Directive 1999/93/EC). It is the point (a) which is very important for
us here. Let us have a cryptographic digital signature scheme which is planned to be
used for a construction of a particular advanced electronic signature scheme. Note
that this is the kind of electronic signature which is commonly understood as a “safe”
one through the whole European Union, and therefore almost all applications tend to
achieve at least this “level” of an electronic signature scheme. It is also accepted that
a general cryptographic digital signature scheme is automatically also an advanced

112

electronic signature scheme. However, if the digital signature scheme used allows an
attacker to construct k-collisions, then the electronic signature scheme based on it
clearly cannot be called advanced, since the condition in (a) would not be fulfilled.
Such a discrepancy can probably lead to tough judicial consequences, and therefore k-
collisions should not be underestimated here.

3. Generalized DSA

The main purpose of Generalized DSA (GDSA) is to generalize common algebraic
properties of DSA [6] and ECDSA [6], [8]. It is introduced here solely for the purpose
of developing a general model for dealing with k-collisions, which have to give valid
results for both DSA and ECDSA. Therefore, the particular security requirements for
GDSA based signature schemes, other than those being connected with k-collision
attacks, are not discussed here. Moreover, we make an effort to keep the GDSA
definition algebraically close to the way in which the (EC)DSA schemes are
practically realized (here we may differ from the approaches generalizing (EC)DSA
from other viewpoints, e.g. [1], [17]).

Definition 3.1 (Generalized DSA – GDSA). A GDSA instance consists of public
parameters, a private key, a public key, and public transformations.

− The public parameters are represented as the three-tuple (P, n, g), where P is a
cyclic group, g is a generator of a prime-order subgroup G of P and n is the order
of G. Unless stated otherwise, the group operation on P will be written in
multiplicative notation and the identity element of P will be denoted as id.

− The private key (x) is an integer satisfying 0 < x < n. The public key (y) is an
element of P, y = gx.

− The public transformations consist of two publicly known mappings denoted as H
and ϕ. H is a hash function, H: M → H(M), where M is a set of input messages to
be processed. We assume that H implicitly incorporates a string-to-integer
conversion, i.e. H(M)⊂ Z.

− The purpose of ϕ is to define a conversion function ϕ: P → Zn. Note that since n is
a prime, Zn is isomorphic to GF(n). Our reasoning doesn’t depend on the concrete
definition of ϕ here.

− We denote the GDSA instance as Inst, Inst = (P, n, g, x, y, H, ϕ). The GDSA
instance without the private key x will be referred to as the public GDSA instance
(or the public part of GDSA instance) Pub, Pub = (P, n, g, y, H, ϕ).

Definition 3.2 (Proper GDSA instance). Let (P, n, g, x, y, H, ϕ) be a GDSA instance.
This instance is said to be proper if the following conditions hold:

i) P has a proper structure – the meaning of this condition depends on the
particular kind of GDSA (e.g. P must not be built over a weak elliptic
curve, n is large enough, etc.)

113

ii) n is a prime, n divides the order of P
iii) ord(g) = n
iv) 0 < x < n
v) gx = y

The purpose of this definition is to summarize general requirements to which a
GDSA instance must conform. We will use this definition when showing that a
particular generated instance is sound enough to be regarded as a properly working
scheme without any obvious marks of an attack.

Definition 3.3 (GDSA signing algorithm). Let (P, n, g, x, y, H, ϕ) be a GDSA
instance and let m be a message to be signed. The signing operation then proceeds
with the following steps:

i) compute the integer h, h = H(m)
ii) generate a secret random integer k, 0 < k < n; note that k will be

referred to as a nonce
iii) compute the integer r, r = ϕ(gk)
iv) compute the integer s, s = (h + rx)k-1 mod n, where kk-1 ≡ 1 (mod n)
v) if either r = 0 or s = 0, repeat the whole computation from (ii)
vi) the pair (r, s) is the signature of m

Definition 3.4 (GDSA verifying algorithm). Let Pub, Pub = (P, n, g, y, H, ϕ), be a
public GDSA instance and let m be a message, whose signature (r, s) has to be
verified. The verifying operation then proceeds with the following steps:

i) if either r = 0 or s = 0, then the signature is rejected as an invalid one
ii) compute the integer h, h = H(m)
iii) compute the integer u1, u1 = h*s-1 mod n, where ss-1 ≡ 1 (mod n)
iv) compute the integer u2, u2 = r*s-1 mod n
v) compute the integer r’, r’ = ϕ(gu1yu2)
vi) the signature is valid iff r’ = r, i.e. (Pub, m, (r,s))ρ iff r’ = r

3.1 DSA

The DSA scheme [6] will be viewed as the GDSA scheme where P is a multiplicative
group Zp

*, where p is a prime and n|(p-1). The identity element is id = [1]p. The
conversion function ϕ is defined as the mapping ϕ: Zp

* → Zn: a → ((a mod p) mod
n). The standard [6] currently prescribes the use of the SHA-1 [5] as H. Note that the
order of the working prime order subgroup is often ([6]) denoted as q, therefore we
adopt this notation in Appendix A.

3.2 ECDSA

The ECDSA scheme [6], [8] will be viewed as the GDSA scheme where P = E(Fq),
Fq is a finite field isomorphic to GF(q) and E is a suitable planar elliptic curve over
Fq. E(Fq) is an abelian group of points on the curve E (together with the special point

114

at infinity denoted as O). The order of E(Fq) is denoted #E(Fq), so n|#E(Fq). The
identity element is id = O. The group operation on E(Fq) is written in additive
notation, where a v-times iterated addition of a point A, A ∈ E(Fq), is denoted as B =
[v]A, B ∈ E(Fq). The conversion function ϕ is the mapping ϕ: E(Fq) → Zn: A = (x, y)
→ int(x) mod n, where int(x) is an integer representation for the x-coordinate of A, x
∈ Fq. The concrete definition of int(.) depends on the way in which the field Fq is
constructed. The standard [6] currently prescribes the use of the SHA-1 [5] as H.

4. K-collisions for GDSA

In this part we show how to effectively compute k-collisions for the GDSA scheme.
The algorithm introduced here is message-independent, non-cooperative, and proper.
Therefore, it can be also used for the purpose of signature stealing (c.f. §2).

Theoretically, it might be possible for k-colliding instances to belong to different
kinds of GDSA. However, our algorithm presented here is based on that the instances
belong to the same kind of GDSA, i.e. they are both either DSA instances or ECDSA
instances. This assumption allows us to design the algorithm in an effective way,
while it does not bring any practical restriction.

Algorithm 4.1 (Computing a k-collision for GDSA).
Input:

• Public GDSA instance PubA = (PA, nA, gA, yA, HA, ϕA), which is a public part
of a proper GDSA instance InstA.

• Message mA and its signature (r, s), such that (PubA, mA, (r, s))ρ.
• Message mB, which the k-collision is computed for.

Output:
• GDSA instance InstB = (PB, nB, gB, xB, yB, HB, ϕB).
• k-collision (PubA, mA, PubB, mB, (r, s)).

Computation:
i) place P = PB = PA, n = nB = nA, H = HB = HA and ϕ = ϕB = ϕA
ii) compute the integer hA, hA = H(mA)
iii) compute the integer u1, u1 = hA*s-1 mod n, where ss-1 ≡ 1 (mod n)
iv) compute the integer u2, u2 = r*s-1 mod n
v) compute α, α ∈ P, α = gA

u1yA
u2

vi) generate a secret random integer z, 0 < z < n
vii) compute the integer kB, such that zkB ≡ 1 (mod n), i.e. kB ≡ z-1 (mod n)
viii) compute the integer hB, hB = H(mB)
ix) if kBs – hB ≡ 0 (mod n) goto (vi)
x) set xB = (kBs – hB)r-1 mod n, where rr-1 ≡ 1 (mod n)
xi) set gB = αz
xii) set yB = gB

xB
xiii) if yB = yA goto (vi)
xiv) set InstB = (PB, nB, gB, xB, yB, HB, ϕB), PubB = (PB, nB, gB, yB, HB, ϕB)
xv) return InstB, (PubA, mA, PubB, mB, (r, s))

�

115

Note that setting PB = PA (and nB = nA) should not look suspicious later on (e.g. at
the court), because DSA and ECDSA schemes were both developed with the
possibility of sharing the group P and its prime order subgroup among many
independent users. Sometimes, it is even recommended in the case of ECDSA to use
prescribed elliptic curves rather than generating new ones (c.f. curves in [6]).

The value of z generated in step (vi) should be discarded after finishing the
computation, since it may allow other attackers to discover the private key xB and it
would serve as an easy proof of a “cooked” generation of InstB.

Theorems on general properties of the GDSA instance InstB produced by algorithm
4.1, together with the main theorem stating that the algorithm produces a k-collision,
follow. Unless stated otherwise, these theorems and lemmas presume the validity of
the input assumptions of 4.1, and their symbols refer to its input, temporary and
output variables. Owners of the instances InstA and InstB are referred to as the users A
and B respectively.

Lemma 4.2 (Tractability of algorithm 4.1). Algorithm 4.1 is tractable if the signing
and verifying algorithms of the particular GDSA are tractable.

Proof. This algorithm uses the same kind of operations as the signing and verifying
algorithms (c.f. definitions 3.3 and 3.4).

�
Lemma 4.3 (On the generator gB). For gB it holds that gB = (gA

kA)z, where kA is the
nonce used by the user A for the (r, s) computation. Furthermore, we have gB

kB = gA
kA

and ϕ(gB
kB) = ϕ(gA

kA) = r.

Proof. The equation gB = (gA
kA)z follows immediately from step (xi) of algorithm 4.1

and the assumption of (PubA, mA, (r, s))ρ. Also following are gB
kB = gA

kA and r =
ϕ(gB

kB), since zkB ≡ 1 (mod n) and n is the order of gA.
�

Lemma 4.4 (On the values of xA,B and yA,B). It holds that:
i) xB = [(kA

-1kBhA – hB)r-1 + kA
-1kBxA] mod n

ii) xA = [(kAkB
-1hB – hA)r-1 + kAkB

-1xB] mod n
iii) yB = gA

γ, for γ ≡ (hA – kAkB
-1hB)r-1 + xA (mod n)

iv) yA = gB
λ, for λ ≡ (hB – kA

-1kBhA)r-1 + xB (mod n)

Proof.
i) According to step (x) of algorithm 4.1, we have xB = (kBs – hB)r-1 mod n.

We assume that (r, s) is a valid signature of mA computed according to
definition 3.3. From here we get s = (hA + rxA)kA

-1 mod n, where kAkA
-1 ≡

1 (mod n) and kA is a random integer, 0 < kA < n. Substituting this
expression into the equation for xB we have xB = [(kA

-1kBhA – hB)r-1 + kA
-

1kBxA] mod n.

ii) Follows directly from (i).

iii) Using (i), lemma 4.3 and the equation from step (xii) of 4.1 we get the
equation for yB.

iv) Analogically as (iii).
�

116

Theorem 4.5 (On termination). Algorithm 4.1 terminates.

Proof. There are only two loops in 4.1 and these are in steps (ix) and (xiii). The loop
in step (ix) acts if and only if kBs – hB ≡ 0 (mod n). Since gcd(s, n) = 1, there is exactly
one value of kB, 0 < kB < n, satisfying this congruence. Therefore, an infinite loop does
not occur here for randomly chosen values of kB. The second loop is in step (xiii) and
it acts if and only if yB = yA. Using lemma 4.4 we can rewrite this condition as yA =
gA

γ, for γ ≡ (hA – kAkB
-1hB)r-1 + xA (mod n), where kA is a random number, 0 < kA < n,

which is fixed for all loops through algorithm 4.1. This condition holds if and only if
(hA – kAkB

-1hB)r-1 ≡ 0 (mod n). Again, there is only one value of kB which satisfies this
congruence. Therefore, this loop is finite for randomly chosen values of kB.

�

Theorem 4.6 (Properness of InstB). The GDSA instance InstB computed by algorithm
4.1 is proper.

Proof. Let us check the conditions (i - v) required by definition 3.2:

i-ii) These conditions are fulfilled according to step (i) of algorithm 4.1. We
rely on the assumption that InstA is proper, and therefore PA must have a
proper structure, and n must divide the order of PA.

iii) Recall that n = nB = nA and lemma 4.3 above. Since we assume that the
instance InstA is proper, it holds that ord(gA) = n, where n is a prime.
Because of n being a prime and kA, z < n it follows that gcd(n, kAz) = 1.
Therefore ord(gB) = ord(gA) = n.

iv) Since xB is a result of operation modulo n it trivially holds that 0 ≤ xB <
n. It remains to check that xB ≠ 0. Let us suppose that xB = 0. Since
gcd(r-1, n) = 1 and xB = (kBs – hB)r-1 mod n, this equation holds if and
only if kBs – hB ≡ 0 (mod n). However, this is prevented by step (ix).
Therefore 0 < xB < n.

v) It follows directly from step (xii) of algorithm 4.1.
�

Theorem 4.7 (Algorithm 4.1 produces a k-collision). The five-tuple (PubA, mA,
PubB, mB, (r, s)) computed by algorithm 4.1, is a k-collision. Furthermore, the
algorithm is a message-independent non-cooperative and proper one.

Proof. We assume that (PubA, mA, (r, s))ρ. It remains to show that also (PubB, mB, (r,
s))ρ and PubA ≠ PubB. We use verifying algorithm 3.4 for mB and PubB at first. In the
steps (i - iii) of 3.4 we obtain u1 = hBs-1 mod n, u2 = rs-1 mod n, where ss-1 ≡ 1 (mod
n). In step (v) of 3.4 we get r’ = ϕ(gB

u1yB
u2) = ϕ(gB

ω), where ω ≡ hBs-1 + xBrs-1 (mod
n). From step (x) of 4.1 we have xB = (kBs – hB)r-1 mod n. Substituting this value to the
congruence for ω we get ω ≡ hBs-1 + kB - hBs-1 ≡ kB (mod n), so r’ = ϕ(gB

kB). According
to lemma 4.3 we get r’ = r. Therefore, the signature (r, s) is valid. Furthermore,
according to the condition in step (xiii) of 4.1, the public instances PubA and PubB
differ at least in the values of public keys yA and yB, therefore, (PubA, mA, PubB, mB, (r,
s)) is a k-collision. Moreover, there is neither a restriction for messages mA,B nor a
need for a cooperation with the user A. Therefore, this algorithm is message-
independent and non-cooperative. Since the validity of the A’s private key is left

117

intact and the B’s private key is computed in step (x) of 4.1, this algorithm is also
proper.

�

Theorem 4.8 (On attacker’s private key secrecy). Unless the particular realization
of GDSA can be broken (c.f. proposition 1.1), there is a negligible probability that the
user A is able to break B’s instance InstB.

Proof. If the particular GDSA realization (e.g. DSA, or ECDSA) cannot be broken,
then there is no way for an ordinary user to break someone else’s instance. However,
we shall check if the special construction of InstB used in algorithm 4.1 helps the users
A and B to break each other’s instances or not. At first, we observe that the users A
and B play symmetric roles in our scheme: Both of them may regard her GDSA
instance as the first one for which the second user has computed her k-colliding
instance. This symmetry can be seen from lemma 4.4. Therefore, if there is a way for
the user A to discover the B’s private key, then there is also a way for the user B to
discover A’s private key. Because there is no need for a cooperation between A and B,
it follows that the user B could break the A’s GDSA instance simply by computing an
appropriate k-collision. If we assume that breaking the particular GDSA scheme is
hard, then there must be a negligible probability that the appropriate k-collision would
be found using algorithm 4.1. Therefore, the construction used in 4.1 cannot
practically allow the user B to break the A’s instance. From the symmetry observed
above, it follows that the construction does not practically allow the user A to break
B’s instance.

�

5. Basic Limits for General K-collision Searching Algorithms

In §4 we have seen an effective algorithm for k-collision searching. However, there
are other approaches to this problem. The aim of this paragraph is to show basic limits
for general k-collision searching algorithms in GDSA schemes. It will help us when
designing appropriate general countermeasures in §6.

Definition 5.1. Let us denote ϕ |G the GDSA (c.f. def. 3.1) conversion function ϕ
restricted on G, where G is the prime-order subgroup of P generated by g.

It has been shown (c.f. [1], [13]), that ϕ |G is an almost-bijective mapping.
Moreover, we conjecture the following hypothesis for secure GDSA instances.

Hypothesis 5.2 (Inner collision resistance). For randomly chosen pairs (g1, g2), such
that g1,2 ∈ P, ord(g1) = ord(g2) = n, there is no tractable algorithm producing
integers v, w, such that ϕ |G(g1

v) = ϕ |G(g2
w), while g1

v ≠ g2
w.

Theorem 5.3 (Limiting theorem). Unless GDSA schemes can be broken, there is no
feasible proper k-collision searching algorithm producing k-collision (PubA, mA,
PubB, mB, (r, s)) for PubA,B, such that PubA = (P, n, gA, yA, H, ϕ) and PubB = (P, n, gB,
yB, H, ϕ), where gA,B are arbitrary given generators.

118

Proof (assuming validity of 5.2). Obviously, the GDSA instance Inst = (P, n, g, x, y,
H, ϕ) can be broken if we can solve the discrete logarithm problem (DLP) according
to the generator g effectively. We show how a general proper k-collision searching
algorithm can be used for solving the DLP. Let us assume that we want to solve the
DLP on P with the base g for the public key y to get the private key x. In the first step,
we choose temporary helping GDSA instances InstA and InstB, such that InstA = (P, n,
g, xA, yA, H, ϕ), InstB = (P, n, y, xB, yB, H, ϕ), where xA,B are arbitrarily chosen private
keys and yA,B are the appropriate public keys. Note that InstB uses the public key y in
the place of its generator gB. Also, note that xA,B may be fixed later on, just during the
k-collision searching process. We only assume that these values are known then (i.e.
the algorithm is proper). Now we start searching to find two k-colliding messages
mA,B, and a k-colliding signature (r, s). Since we know xA,B then, we can compute
particular nonces kA,B for mA,B and (r, s) easily. It holds that r = ϕ |G(gkA) = ϕ |G(ykB).
Using the properties of ϕ |G stated above, we can rewrite this as gkA = ykB with a high
probability. Since n is the order of g and y = gx, we have kA ≡ xkB (mod n). From here
we can compute the value of x easily, which means that our attack on x is finished.

Hypothesis 5.2 tells us that the general algorithm used above cannot rely on inner
collisions of ϕ |G. Although there may still be singular problems with these collisions,
they should appear as often as if ϕ |G was a pseudorandom function. Such rare
exceptions may then be easily overcome by repeating the whole process several times,
using different values of gA,j and gB,j in each pass j. For instance, we can set gA,j = gj,
gB,j = yj for j ∈ <1, n). This construction leads to jkA,j ≡ jxkB,j (mod n) then, so still kA,j
≡ xkB,j (mod n).

�

6. Countermeasures

6.1 Basic Reasoning

Theorem 5.3 tells us that even if we place no restrictions on the public and private
keys (except that we want to know these respective keys) and set no rules for the k-
colliding messages and the signature, the k-colliding instances PubA,B still cannot have
their remaining public parameters set to arbitrary values. Their choices must in some
way be dependent to allow an attacker to compute a k-collision. It requires further
research to say how far this dependency goes, but we can conclude heuristically that
the dependency is probably stronger than the necessity to omit the setup used in the
premise of theorem 5.3.

Corollary 6.1 (Hypothesis on dependency). If the particular GDSA scheme cannot
be broken, then there is no proper k-collision searching algorithm that allows the
public parameters of k-colliding instances to be chosen independently.

119

6.2 Online Protocol

Basing on corollary 6.1, we propose the idea of a simple but strong countermeasure:
All public parameters for GDSA schemes must be independently generated by a
trusted third party on a per-instance basis. The authority shall also issue a certificate
of proper GDSA instance generation. For example, the scenario under which users
generate their GDSA instances and requests for a public key certificate should be like
this one:

i. user -> certification authority: certification_request_start
ii. certification authority -> user: public_ parameters_(P, n, g),

token
iii. user chooses a private key and computes the public key
iv. user -> certification authority: public_key, possession_proof,

token

We assume the conversion function ϕ to be implicitly set according to the
particular kind of GDSA. The token introduced in steps (ii) and (iv) helps the
certification authority ensure that the particular public parameters generated are used
only by one user. The possession_proof introduced in step (iv) serves as a proof
of private key possession. It has to ensure that whatever k-collision searching
algorithm should be used, it must be a proper one (c.f. definition 2.4 and corollary
6.1). The public key certificate issued according to the protocol written above also
serves as the certificate of a proper GDSA instance generation.

Note that in the case of ECDSA, this setup may be attacked by the inner m-
collisions presented in [17, §4.2 – Duplicate Signatures]. However, disclosing such an
m-collision leads to the private key disclosure and therefore it is not considered a
security weakness ([17]). If we assume that the certification authority is honest, then
the inner m-collisions of DSA described in [18] are successfully defeated by this
setup.

The proposed protocol may also be used in a situation when users need to share a
common group P and its prime-order subgroup (e.g. they all want to use the same
standardized elliptic curve). In such a case, the authority independently generates for
each request a new value of the generator g only, while the remaining public
parameters (P, n) stay constant. The impossibility of k-collision computing then
follows directly from theorem 5.3.

6.3 Non-invertible GDSA Setup

It might be useful to substitute the above-mentioned protocol by a non-invertible
verifiable GDSA setup. Such a setup may be regarded as an extension of the DSA and
ECDSA setups currently defined in [6], [8]. One idea could be to extend the concept
of “seeded” prime number (DSA case) searching or elliptic curve (ECDSA case)
construction to also cover the subgroup generator g. This item remains unprotected by
those mechanisms currently and it has already been shown ([18]) that it is no good.
The value of SEED used to initialize the setup would then serve as the certificate of
proper instance generation. This improving step would help to reduce the risk of k-

120

collisions prominently. However, there still remains a possibility of generating a 2nd
order k-collision cooperatively (the main problem here is that users are not forced to
choose their public parameters independently). Let InstA = (P, n, g, xA, yA, H, ϕ) be a
GDSA instance generated properly (e.g. certified by the SEED) and let (mA, mB) be
two different messages for which users A and B want to find a k-collision. Now, the
user A computes the signature (r, s) of mA in InstA normally, while she keeps the value
of the nonce k. This value is passed to the user B then, together with the signature (r,
s) and the public part of InstA. The user B then constructs InstB = (P, n, g, xB, yB, H, ϕ),
where the private key xB is computed from the congruence s ≡ (H(mB) + xBr)k-1 (mod
n). It is easy to see that (PubA, mA, PubB, mB, (r, s)) is the 2nd order k-collision. The
drawback of this process is that it requires the cooperation between the users who
then know each other’s private keys. Moreover, it allows a third party seeing this k-
collision to discover the linear relation between xA,B as xA – xB ≡ r-1(H(mB) – H(mA))
(mod n). On the other hand, it clearly breaks the countermeasure based on the simple
setup extension. It follows that there is a need for a broader extension of the current
standard – it shall also cover the generation of the private key. Moreover, the
certificate of the proper private key generation shall be verifiable, without disclosing
any secret information about the key. It remains an open research question on how to
do such an extension securely.

6.4 Notary Services and-or Authentication of Public Instances

Another kind of countermeasure may be deployed in systems which use some kind of
notary services (for overview on notary services see [12]). It may be feasible in such a
situation to require every signed document to be over-signed by a trusted third party.
The signature should cover: the message, its (primary) signature, and the public part
of the GDSA instance which shall be used for the (primary) signature verification.
Similar techniques may also be based on a time stamping service.

It might be also tempting to propose the following countermeasure: request users to
sign not only the message, but also the public part of GDSA instance. The signature
should then cover the string m||public_instance instead of plain m. However, this
countermeasure seems to have several weaknesses, at least from a theoretical point of
view. It still leaves a possibility for an attacker to claim that, due to an error, the
public_instance was appended badly or even it was not appended at all. Furthermore,
there is a threat of cooperative 2nd order k-collisions which should be investigated to
devise an acceptable proof of security. So far, it is known that it is not enough to hash
m together with the public key only. The whole set of public parameters must be
added, too. There is still an open question of how far this countermeasure is affected
by the properties of the conversion function ϕ, especially by its invertibility.
Moreover, this countermeasure affects data formats and the behavior of all client
applications, in contrast with the protocol proposed in §6.2 above, which only needs
the extension of the certificate request process.

121

7. Closing Remarks

We stress that k-collisions are not only a problem for DSA and ECDSA. The same
problem may be studied in the RSA [14], ElGamal [2] and Schnorr [16] signature
schemes (as well as in the others). Of course, there is a difference in how feasible and
conspicuous these attacks are. Feasibility says whether it is possible to do such an
attack, while the second criterion tells us if it is easy to recognize marks of the attack
later. The current state of research shows that the DSA and ECDSA schemes belong
to the group where k-collision attacks are feasible and do not leave special marks on
k-colliding instances. ElGamal and Schnorr schemes probably belong to the same
group, since they share those general algebraic properties which were used for our
attack. However, both of them introduce certain properties which induce limitations.
For example, the algorithm presented here can produce 1st order k-collisions only,
when applied (and adjusted) on Schnorr scheme (due to binding of the message m
being signed and the value of r, r = gk mod p, as e = H(m||r), where the value of e
becomes a part of the signature, c.f. [16, p. 168]). Therefore, we may conclude that
these schemes come with some (maybe planned or unplanned) built-in
countermeasures which are (however) not strong enough to defeat all these attacks.
On the other hand, RSA seems to belong to the group where these attacks are still
feasible [15], but they do produce special marks which could be used by a third party
to even break one of the k-colliding instances.

8. Conclusion

We have introduced the notion of key-collisions in signature schemes, which may be
regarded as a kind of attack parallel to well known message-collisions. Both of them
share the common idea of an alternative explanation saying why the judge has a
message and its (mathematically) valid signature when the user swears that she did
not sign it. Instead of claiming that it was a different message from what has been
signed in reality, an attack based on key-collisions leads to claiming that it was a
different user who has signed the message or even who has signed a different
message. Next, we presented a (trivially) feasible algorithm for key-collision
searching in DSA and ECDSA, which is message-independent and does not require
any cooperation between the owners of colliding instances. Therefore, an attacker
may use this algorithm to steal a signature of another user. The effectiveness of the
algorithm comes mainly from the ability of the attacker to generate (EC)DSA
instances with a relatively high degree of freedom. We showed that even the
legitimate owner of the key should not have the ability to generate her key completely
at her will without having to be able to present a proof of its honest creation.

It was shown in §5, that unless DSA and ECDSA schemes can be broken,
possibilities for key-collision searching in these respective schemes can be prevented.
We have developed a general countermeasure based on the simple online procedure
for a key generation (§6.2). When deployed in an existing information system, it only
changes a certificate request process. Other processes and data structures remain

122

unchanged. Several other possible countermeasures were proposed and discussed, too
(§6.3, §6.4).

References

1. Brown, D.-R.-L.: Generic Groups, Collision Resistance, and ECDSA, IEEE 1363,
February 2002 (c.f. [7])

2. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms, IEEE Transactions on Information Theory, Vol. 31, pp. 469–472, IEEE,
1985

3. EESSI - The European Electronic Signature Standardization Initiative, c.f. the
homepage at http://www.ict.etsi.org/eessi/EESSI-homepage.htm

4. E-SIGN - The Electronic Signatures in Global and National Commerce Act, enacted
on June 30, 2000, c.f. http://www.cybercrime.gov/esign.htm

5. FIPS PUB 180-1: Secure Hash Standard (SHA-1), National Institute of Standards and
Technology, January 2001

6. FIPS PUB 186-2: Digital Signature Standard (DSS), National Institute of Standards
and Technology, January 27, 2000, update: October 5, 2001

7. IEEE P1363: Standard Specifications for Public Key Cryptography, August 1998. c.f.
http://grouper.ieee.org/groups/1363

8. Johnson, D., Menezes, A.-J., and Vanstone, S.-A.: The Elliptic Curve Digital
Signature Algorithm (ECDSA), International Journal of Information Security, Vol 1,
Issue 1, pp. 36-63, Springer-Verlag, 2001

9. Kiayias, A. and Yung, M.: Breaking and Repairing Asymmetric Public-Key Traitor
Tracing, in Proc. of the 2002 ACM Workshop on Digital Rights Management, 2002

10. Landwehr, C.-E.: Computer Security, International Journal of Information Security,
Vol 1, Issue 1, pp. 3-13, Springer-Verlag, 2001

11. Massias, H., Serret Avila, X., and Quisquater, J.-J.: Timestamps: Main issues on their
use and implementation, In Proc. of IEEE 8th International Workshop on Enabling
Technologies: Infrastructures for Collaborative Enterprises-Fourth International
Workshop on Enterprise Security, pp. 178-183, June 1999

12. Menezes, A.-J., van Oorschot, P.-C., and Vanstone, S.-A.: Handbook of Applied
Cryptography, CRC Press, 1996

13. Nguyen, P.-Q. and Shparlinski, I.-E.: The Insecurity of the Digital Signature
Algorithm with Partially Known Nonces, Journal of Cryptology, Vol. 15, 3/2002, pp.
151-176, Springer-Verlag, 2002

14. Rivest, R.-L., Shamir, A., and Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems, Communications of the ACM, pp. 120-126, 1978

15. Rosa, T.: On Key-collisions in Signature Schemes, In proc. of the workshop VKB
2002 (Czech language), pp. 14-26, Brno, April 3.-4., 2002

16. Schnorr, C.-P.: Efficient Signature Generation by Smart Cards, Journal of
Cryptology, Vol. 4, pp. 161–174, Springer-Verlag, 1991

17. Stern, J., Pointcheval, D., Malone-Lee, J., and Smart, N.-P.: Flaws in Applying Proof
Methodologies to Signature Schemes, in Proc. of CRYPTO 2002, LNCS 2442, pp.
93-110, Springer-Verlag, 2002

18. Vaudenay, S.: Hidden Collisions on DSS, in Proc. of CRYPTO ’96, pp. 83-88,
Springer-Verlag, 1996

123

Appendix A: Algorithm 4.1 edited for DSA and ECDSA

The algorithm for effective k-collision searching (c.f. §4) edited for the DSA and
ECDSA schemes is presented here. It should be a helpful illustration of how the
general reasoning done for the GDSA model (c.f. §3, §4) transforms back to these
particular schemes.

Notes: The conversion function ϕ together with the hash function H (SHA-1) are
implicitly defined for the DSA and ECDSA schemes (c.f. §3.1, §3.2). Therefore we
omit them from the notation of the (EC)DSA instances here. Furthermore, we use the
prime p alone when referring to the multiplicative group P = Zp

* in the case of DSA.

Algorithm DSA-4.1 (Computing a k-collision for DSA).
Input:

• Public DSA instance PubA = (pA, qA, gA, yA).
• Message mA and its signature (r, s), such that (PubA, mA, (r, s))ρ.
• Message mB, which the k-collision is computed for.

Output:
• DSA instance InstB = (pB, qB, gB, xB, yB).
• k-collision (PubA, mA, PubB, mB, (r, s)).

Computation:
i) place p = pB = pA, q = qB = qA
ii) compute the integer hA, hA = SHA-1(mA)
iii) compute the integer u1, u1 = hA*s-1 mod q, where ss-1 ≡ 1 (mod q)
iv) compute the integer u2, u2 = r*s-1 mod q
v) compute α, α = gA

u1yA
u2 mod p

vi) generate a secret random integer z, 0 < z < q
vii) compute the integer kB, zkB ≡ 1 (mod q), i.e. kB ≡ z-1 (mod q)
viii) compute the integer hB, hB = SHA-1(mB)
ix) if (kBs – hB) ≡ 0 (mod q) goto (vi)
x) set xB = (kBs – hB)r-1 mod q, where rr-1 ≡ 1 (mod q)
xi) set gB = αz mod p
xii) set yB = gB

xB mod p
xiii) if yB = yA goto (vi)
xiv) set InstB = (pB, qB, gB, xB, yB), PubB = (pB, qB, gB, yB)
xv) return InstB, (PubA, mA, PubB, mB, (r, s))

�

124

Algorithm ECDSA-4.1 (Computing a k-collision for ECDSA).
Input:

• Public ECDSA instance PubA = (E(Fq)A, nA, GA, YA).
• Message mA and its signature (r, s), such that (PubA, mA, (r, s))ρ.
• Message mB, which the k-collision is computed for.

Output:
• ECDSA instance InstB = (E(Fq)B, nB, GB, xB, YB).
• k-collision (PubA, mA, PubB, mB, (r, s)).

Computation:
i) place E(Fq)B = E(Fq)A, n = nB = nA
ii) compute the integer hA, hA = SHA-1(mA)
iii) compute the integer u1, u1 = hA*s-1 mod n, where ss-1 ≡ 1 (mod n)
iv) compute the integer u2, u2 = r*s-1 mod n
v) compute α, α = [u1]GA + [u2]YA
vi) generate a secret random integer z, 0 < z < n
vii) compute the integer kB, zkB ≡ 1 (mod n) i.e. kB ≡ z-1 (mod n)
viii) compute the integer hB, hB = SHA-1(mB)
ix) if (kBs – hB) ≡ 0 (mod n) goto (vi)
x) set xB = (kBs – hB)r-1 mod n, where rr-1 ≡ 1 (mod n)
xi) set GB = [z]α
xii) set YB = [xB]GB
xiii) if YB = YA goto (vi)
xiv) set InstB = (E(Fq)B, nB, GB, xB, YB), PubB = (E(Fq)B, nB, GB, YB)
xv) return InstB, (PubA, mA, PubB, mB, (r, s))

�

