
On the Key-collisions in the
Signature Schemes

Tomáš Rosa
ICZ a.s., Prague, CZ
Dept. of Computer Science, FEE, CTU in Prague, CZ
tomas.rosa@i.cz

Motivation to study k-collisions

♦ Def. Non-repudiation [9,10]. The third
independent party can be convinced that
a particular event did (or did not) occur.

Motivation to study k-collisions
♦ Moreover we shall require the decision

made to be consistent with the objective
reality.
• It may be possible to make just-some decision,

however we want us to be almost sure, that this
decision is not only formally true. We want to
be almost sure that things have happened right
in that way, that we say.

♦ The k-collisions seem to be (at least
theoretically) able to violate this concept.

The problem illustrated

Something really important…

SignatureSignatureSignatureSignature

VALID

Public key A

VALID

Public key B
The third independent party
tries to find out the truth...

?!

Another signatureAnother signatureAnother signatureAnother signature

Public key of the
really honest party

VALID

The problem illustrated (II)

Something really
important…

SignatureSignatureSignatureSignature

VALID

Public key A

VALID

Public key B

The third independent party…

The k-collision

♦ Def. k-collision. Let (m, S) be the message
m and its signature S, which is valid in the
given signature scheme under the public key
PubA.The pair of public keys (PubA, PubB),
PubA ≠ PubB, is said to be the k-collision if
there is (m, S), such that S is valid signature
of m under the both keys PubA and PubB.
Moreover such a signature S we refer to as
the k-colliding signature.

Our contribution
♦ Our aim is here to show how to find the k-collision

for the given message m and the k-colliding
signature S for the signature schemes: RSA, DSA
and ECDSA.

♦ The common scenario is based on the possibility
of the unrestricted generation of the second
colliding public key.

♦ There is no need for the cooperation between the
holders of the public keys PubA and PubB.
• The second user can “steal” the signature of the first

one.

The k-collision for the RSA
♦ Let us have (m, S) and the public key PubA,

PubA = (nA, eA).
♦ We search for the second public key PubB,

PubB = (nB, eB), such that:
• SeB mod nB = r, where r = SeA mod nA,
• |nB|/8 = |nA| /8.

♦ Such a key produces the k-collision for
many encoding methods (mainly those in
the PKCS#1 standard).

The k-collision for the RSA
♦ We start with choosing the nB, such that:

• nB = pq, p and q are both primes,
• p = 2vα+1, v is a prime, v < 280,
• q = 2wβ+1, w is a prime, w < 280, w ≠ v,
• |nB|/8 = |nA| /8.

♦ Such a primes p, q induce the factor groups
Zp* and Zq*, where the discrete logarithm
problem (DLP) can be solved efficiently.

♦ Note that gcd(p-1, q-1) = 2.

The k-collision for the RSA

♦ Next we compute ep and eq, such that:
• r ≡ Sep (mod p), i.e. we solve DLP in Zp*,
• r ≡ Seq (mod q), i.e. we solve DLP in Zq* .

♦ We use the Pohlig-Hellman algorithm with
the time-memory trade-off modification
(see [10]) for this purpose.

The k-collision for the RSA

♦ Using the order of S in the groups Zp* and
Zq* we can write:
• eB ≡ ep (mod ordp(S)),
• eB ≡ eq (mod ordq(S)).

♦ If gcd(ordp(S), ordq(S)) = 1, we can directly
compute the eB using the Chinese
Remainder Theorem (CRT). In particular
we use the Gauss’s algorithm [10].

The k-collision for the RSA

♦ If gcd(ordp(S), ordq(S)) = 2, then we can
use the CRT iff ep ≡ eq (mod 2). Otherwise
we must repeat the whole computation from
the starting point.

♦ Once we have computed the eB
successfully, it only remains to compute the
private exponent dB from:
• eB*dB ≡ 1 (mod 2vαwβ)

The k-collision for the RSA

♦ The complexity of the computation is
mainly given by the factors v1/2 and w1/2.

♦ The probability of success in the one pass
through the algorithm described can be
estimated as 63/256 ≈ 25% for v, w > 210.
• Several passes will give the desired k-collision

with the high probability.

The k-collision for the DSA
♦ Def. DSA instance. The DSA instance consists of

the public parameters (p, q, g), the public key y
and the private key x.

♦ Def. Correct DSA instance. The DSA instance is
said to be correct if:
• p, q are both primes,
• 2L-1 < p < 2L, for some L, L = 512 + 64j, where j is an

integer, 0 ≤ j ≤ 8,
• 2159 < q < 2160, q | (p-1),
• gq mod p = 1,
• gx mod p = y.

The k-collision for the DSA
♦ Let us have (m, S), S = (r, s), and the public key

PubA, PubA = yA, together with the public
parameters (pA, qA, gA).

♦ We search for the second public key PubB, PubB =
yB, together with the public parameters (pB, qB, gB)
and the private key xB, such that:
• The DSA instance (pB, qB, gB, yB, xB) is correct,
• The public keys yA and yB form the k-collision on the k-

colliding signature S.

The k-collision for the DSA
♦ We start with setting pB = pA = p, qB = qA = q.
♦ Let us denote h = SHA-1(m).
♦ We compute:

• α = gA
whyA

wr mod p, where w*s ≡ 1 (mod q).
• Note that α = gA

kA mod p, where kA is the unknown
“message key” (see [6]).

• Note that α mod q = r.
♦ Next we choose an integer kB, 1 < kB < q, and

compute z as z*kB ≡ 1 (mod q).
• Note that we keep the kB secret.

The k-collision for the DSA
♦ Let gB = αz mod p.

• Note that (gB
kB mod p) mod q = r.

• The kB becomes the “message key” for the user B.
♦ Finally we compute:

• xB = t(kBs – h) mod q, where r*t ≡ 1 (mod q),
• yB = gB

xB mod p.
♦ It can be easily shown that:

• The DSA instance (pB, qB, gB, yB, xB) is correct,
• The public keys yA, yB form the k-collision on the k-

colliding signature S (with the high probability).

The k-collision for the DSA
♦ Let us denote β ≡ kAkB

-1 (mod q) and note
that then gB = gA

β mod p.
♦ We can write:

• xB ≡ ht(β-1 – 1) + β-1xA (mod q), where r*t ≡ 1 (mod q),
• yB ≡ gA

ht(1-β)yA (mod p).

♦ Note that the user A doesn’t know kB, while
the user B doesn’t know kA.
• The private keys are properly separated, unless

the whole DSA can be broken.

The k-collision for the ECDSA

♦ We’ve used the very general algebraic
properties of the DSA.

♦ These properties are the same as those of
the ECDSA.

♦ From here it follows, that our attack on the
DSA can be routinely extended on the
ECDSA.
• It is elaborated in the original paper.

Tamper Resistant Key
Generation
♦ It is the strong and general countermeasure

against attacks based on k-collisions.
♦ Motto: Nobody (including the legitimate

holder of the private key!) should have the
chance to generate the keys with the values
chosen completely at her/his will.
• So far there are almost no restrictions for the

legitimate users and from here follows the
threat of k-collisions.

Tamper Resistant Key
Generation
♦ The concept of the Tamper Resistant Key

Generation (TRKG) involves the two main
primitive procedures:
• GenKey: (SEED) → (PublicKey, PrivateKey,

PublicParameters, Witness),
• VerifyKey: (PublicParameters, PublicKey,
Witness) → (“OK“/“FALSE“).

Tamper Resistant Key
Generation
♦ The main characteristics of the GenKey are:

• It generates cryptographically strong keys,
• It is one-way with the respect to the input

parameters,
• Any modification, which would lead to the

violation of the previous conditions, is
detectable by the VerifyKey procedure.

Tamper Resistant Key
Generation for the (EC)DSA
♦ It can be based on the existing concept of

the “certificates of SEEDs” [6], however
this concept must be extended also on the
generators of the working subgroups.
• Our attacks show that the standard FIPS PUB

186-2 should be revised in this way.

Tamper Resistant Key
Generation for the RSA
♦ It seems to be an open hard problem, since:

• The Witness should be a public value, which:
• Allows us to detect any discrepancies in the key generation

procedure,
• Doesn’t reveal any sensitive information about the prime

factors of the RSA modulus.

♦ On the other hand it seems to be also problem to
find the method producing the k-collision for the
restricted value of eB:
• eB < 232,
• or it seems to be even harder if eB =! F4.

Temporary countermeasures
♦ Include the public key certificate (or the detailed

key info) in the data to be signed.
♦ Restrict the value of the RSA public exponent, for

example e < 232, or even e =! F4. It should not
decrease the cryptographic strength if we use the
proper formatting methods (otherwise there can be
some attacks, see [10]).

♦ Force the users to use the service of some honest
key generation authority (e.g. the service offered
by the certification authority).

Conclusion
♦ We have presented the notion of k-collisions and

we have shown how this concept can be used for
attacks on the service of non-repudiation.

♦ Effective methods for the construction of k-
collisions for the RSA and (EC)DSA schemes
were elaborated.
• We have shown that none of these schemes provides

the non-repudiation service in itself.
♦ We have identified the concept of the Tamper

Resistant Key Generation as the strong general
countermeasure against these attacks.
• The non-repudiation of signatures extend transitively to

the non-repudiation of the fair key generation.

Questions…

…are welcome.

Thank you…

…for your attention.

Literature
1. Anderson, R. and Needham, R.: Robustness Principles for Public Key Protocols, in Proc. of CRYPTO ’95, pp. 236-247, Springer-Verlag,

1995.
2. Anderson, R. and Vaudenay, S.: Minding your p’s and g’s, in Proc. of ASIACRYPT ’96, pp. 26-35, Springer-Verlag, 1996.
3. Chen, M. and Hughes, E.: Protocol Failures Related to Order of Encryption and Signature: Computation of Discrete Logarithms in RSA

Groups, in Proc. of ACISP ’98, pp. 238-249, Springer-Verlag, 1998.
4. Desmedt, Y., Landrock, P., Lenstra, A., McCurley, K., Odlyzko, A., Rueppel, R. and Smid, M.: The Eurocrypt ’92 Controversial Issue -

Trapdoor Primes and Moduli, in Proc. of EUROCRYPT ’92, pp. 194-199, Springer-Verlag, 1992.
5. FIPS PUB 180-1: Secure Hash Standard (DSS), National Institute of Standards and Technology, January 2001,

http://www.itl.nist.gov/fipspubs/fip180-1.htm.
6. FIPS PUB 186-2: Digital Signature Standard (DSS), National Institute of Standards and Technology, January 2001,

http://csrc.nist.gov/publications/fips/fips186-2/fips186-2.pdf.
7. Gordon, D.-M.: Designing and Detecting Trapdoors for Discrete Log Cryptosystems, in Proc. of CRYPTO ’92, pp. 66-75, Springer-

Verlag, 1992.
8. Johnson, D., Menezes, A. and Vanstone, S.: The Elliptic Curve Digital Signature Algorithm (ECDSA), International Journal of

Information Security, Vol 1, Issue 1, pp. 36-63, Springer-Verlag, 2001.
9. Landwehr, C.-E.: Computer Security, International Journal of Information Security, Vol 1, Issue 1, pp. 3-13, Springer-Verlag, 2001.
10. Menezes, A.-J., van Oorschot, P.-C. and Vanstone, S.-A.: Handbook of Applied Cryptography, CRC Press, 1996, online at

http://www.cacr.math.uwaterloo.ca/hac/.
11. Microsoft: CryptoAPI Version 2.0, MSDN - Platform SDK, 2000.
12. PKCS#1 v2.1: RSA Cryptography Standard, RSA Laboratories, DRAFT2, January 5 2001.
13. Public-Key Cryptography Standards (PKCS), RSA Security, available at http://www.rsasecurity.com/rsalabs/pkcs/index.html.
14. Pohlig S.-C., Hellman M.-E.: An improved algorithm for computing logarithms over GF(p) and its cryptographic significance, IEEE

Transactions on Information Theory, 24 (1978), 106-110.
15. Rivest, R.-L., Shamir, A. and Adleman L.: A method for obtaining digital signatures and public-key cryptosystems, Communications of

the ACM, pp. 120-126, 1978.
16. Vaudenay, S.: Hidden Collisions on DSS, in Proc. of CRYPTO ’96, pp. 83-88, Springer-Verlag, 1996.
17. Vyhláška č. 366/2001 Sb., ÚOOÚ 2001.
18. Zákon o elektronickém podpisu, zákon č. 227/2000 Sb., 2000.

