
On the Key-collisions in the 
Signature Schemes

Tomáš Rosa
ICZ a.s., Prague, CZ
Dept. of Computer Science, FEE, CTU in Prague, CZ
tomas.rosa@i.cz



Motivation to study k-collisions

♦ Def. Non-repudiation [9,10]. The third 
independent party can be convinced that 
a particular event did (or did not) occur.



Motivation to study k-collisions
♦ Moreover we shall require the decision 

made to be consistent with the objective 
reality.
• It may be possible to make just-some decision, 

however we want us to be almost sure, that this 
decision is not only formally true. We want to 
be almost sure that things have happened right 
in that way, that we say.

♦ The k-collisions seem to be (at least 
theoretically) able to violate this concept.
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The k-collision

♦ Def. k-collision. Let (m, S) be the message  
m and its signature S, which is valid in the 
given signature scheme under the public key 
PubA.The pair of public keys (PubA, PubB), 
PubA ≠ PubB, is said to be the k-collision if 
there is (m, S), such that S is valid signature 
of m under the both keys PubA and PubB. 
Moreover such a signature S we refer to as 
the k-colliding signature.



Our contribution
♦ Our aim is here to show how to find the k-collision 

for the given message m and the k-colliding 
signature S for the signature schemes: RSA, DSA 
and ECDSA.

♦ The common scenario is based on the possibility 
of the unrestricted generation of the second 
colliding public key.

♦ There is no need for the cooperation between the 
holders of the public keys PubA and PubB.
• The second user can “steal” the signature of the first 

one.



The k-collision for the RSA
♦ Let us have (m, S) and the public key PubA, 

PubA = (nA, eA).
♦ We search for the second public key PubB, 

PubB = (nB, eB), such that:
• SeB mod nB = r, where r = SeA mod nA,
• |nB|/8 = |nA| /8.

♦ Such a key produces the k-collision for 
many encoding methods (mainly those in 
the PKCS#1 standard).



The k-collision for the RSA
♦ We start with choosing the nB, such that:

• nB = pq, p and q are both primes,
• p = 2vα+1, v is a prime, v < 280,
• q = 2wβ+1, w is a prime, w < 280, w ≠ v,
• |nB|/8 = |nA| /8.

♦ Such a primes p, q induce the factor groups 
Zp* and Zq*, where the discrete logarithm 
problem (DLP) can be solved efficiently.

♦ Note that gcd(p-1, q-1) = 2.



The k-collision for the RSA

♦ Next we compute ep and eq, such that:
• r ≡ Sep (mod p), i.e. we solve DLP in Zp*,
• r ≡ Seq (mod q), i.e. we solve DLP in Zq* .

♦ We use the Pohlig-Hellman algorithm with 
the time-memory trade-off modification 
(see [10]) for this purpose.



The k-collision for the RSA

♦ Using the order of S in the groups Zp* and 
Zq* we can write:
• eB ≡ ep (mod ordp(S)),
• eB ≡ eq (mod ordq(S)).

♦ If gcd(ordp(S), ordq(S)) = 1, we can directly 
compute the eB using the Chinese 
Remainder Theorem (CRT). In particular 
we use the Gauss’s algorithm [10].



The k-collision for the RSA

♦ If gcd(ordp(S), ordq(S)) = 2, then we can 
use the CRT iff ep ≡ eq (mod 2). Otherwise 
we must repeat the whole computation from 
the starting point.

♦ Once we have computed the eB
successfully, it only remains to compute the 
private exponent dB from:
• eB*dB ≡ 1 (mod 2vαwβ) 



The k-collision for the RSA

♦ The complexity of the computation is 
mainly given by the factors v1/2 and w1/2.

♦ The probability of success in the one pass 
through the algorithm described can be 
estimated as 63/256 ≈ 25% for v, w > 210.
• Several passes will give the desired k-collision 

with the high probability.



The k-collision for the DSA
♦ Def. DSA instance. The DSA instance consists of 

the public parameters (p, q, g), the public key y 
and the private key x.

♦ Def. Correct DSA instance. The DSA instance is 
said to be correct if:
• p, q are both primes, 
• 2L-1 < p < 2L, for some L, L = 512 + 64j, where j is an 

integer, 0 ≤ j ≤ 8,
• 2159 < q < 2160, q | (p-1),
• gq mod p = 1,
• gx mod p = y.



The k-collision for the DSA
♦ Let us have (m, S), S = (r, s), and the public key 

PubA, PubA = yA, together with the public 
parameters (pA, qA, gA).

♦ We search for the second public key PubB, PubB = 
yB, together with the public parameters (pB, qB, gB) 
and the private key xB, such that:
• The DSA instance (pB, qB, gB, yB, xB) is correct,
• The public keys yA and yB form the k-collision on the k-

colliding signature S.



The k-collision for the DSA
♦ We start with setting pB = pA = p, qB = qA = q.
♦ Let us denote h = SHA-1(m).
♦ We compute:

• α = gA
whyA

wr mod p, where w*s ≡ 1 (mod q).
• Note that α = gA

kA mod p, where kA is the unknown 
“message key” (see [6]).

• Note that α mod q = r.
♦ Next we choose an integer kB, 1 < kB < q, and 

compute z as z*kB ≡ 1 (mod q).
• Note that we keep the kB secret.



The k-collision for the DSA
♦ Let gB = αz mod p.

• Note that (gB
kB mod p) mod q = r.

• The kB becomes the “message key” for the user B.
♦ Finally we compute:

• xB = t(kBs – h) mod q, where r*t ≡ 1 (mod q),
• yB = gB

xB mod p.
♦ It can be easily shown that:

• The DSA instance (pB, qB, gB, yB, xB) is correct,
• The public keys yA, yB form the k-collision on the k-

colliding signature S (with the high probability).



The k-collision for the DSA
♦ Let us denote β ≡ kAkB

-1 (mod q) and note 
that then gB = gA

β mod p.
♦ We can write:

• xB ≡ ht(β-1 – 1) + β-1xA (mod q), where r*t ≡ 1 (mod q),
• yB ≡ gA

ht(1-β)yA (mod p).

♦ Note that the user A doesn’t know kB, while 
the user B doesn’t know kA.
• The private keys are properly separated, unless 

the whole DSA can be broken.



The k-collision for the ECDSA

♦ We’ve used the very general algebraic 
properties of the DSA.

♦ These properties are the same as those of 
the ECDSA.

♦ From here it follows, that our attack on the 
DSA can be routinely extended on the 
ECDSA.
• It is elaborated in the original paper.



Tamper Resistant Key 
Generation
♦ It is the strong and general countermeasure 

against attacks based on k-collisions.
♦ Motto: Nobody (including the legitimate 

holder of the private key!) should have the 
chance to generate the keys with the values 
chosen completely at her/his will.
• So far there are almost no restrictions for the 

legitimate users and from here follows the 
threat of  k-collisions.



Tamper Resistant Key 
Generation
♦ The concept of the Tamper Resistant Key 

Generation (TRKG) involves the two main 
primitive procedures:
• GenKey: (SEED) → (PublicKey, PrivateKey, 

PublicParameters, Witness),
• VerifyKey: (PublicParameters, PublicKey, 
Witness) → (“OK“/“FALSE“).



Tamper Resistant Key 
Generation
♦ The main characteristics of the GenKey are:

• It generates cryptographically strong keys,
• It is one-way with the respect to the input 

parameters,
• Any modification, which would lead to the 

violation of the previous conditions, is 
detectable by the VerifyKey procedure.



Tamper Resistant Key 
Generation for the (EC)DSA
♦ It can be based on the existing concept of 

the “certificates of SEEDs” [6], however 
this concept must be extended also on the 
generators of the working subgroups.
• Our attacks show that the standard FIPS PUB 

186-2 should be revised in this way.



Tamper Resistant Key 
Generation for the RSA
♦ It seems to be an open hard problem, since:

• The Witness should be a public value, which:
• Allows us to detect any discrepancies in the key generation 

procedure,
• Doesn’t reveal any sensitive information about the prime 

factors of the RSA modulus.

♦ On the other hand it seems to be also problem to 
find the method producing the k-collision for the 
restricted value of eB:
• eB < 232,
• or it seems to be even harder if eB =! F4.



Temporary countermeasures
♦ Include the public key certificate (or the detailed 

key info) in the data to be signed.
♦ Restrict the value of the RSA public exponent, for 

example e < 232, or even e =! F4. It should not 
decrease the cryptographic strength if we use the 
proper formatting methods (otherwise there can be 
some attacks, see [10]).

♦ Force the users to use the service of some honest 
key generation authority (e.g. the service offered 
by the certification authority).



Conclusion
♦ We have presented the notion of k-collisions and 

we have shown how this concept can be used for 
attacks on the service of non-repudiation.

♦ Effective methods for the construction of k-
collisions for the RSA and (EC)DSA schemes 
were elaborated.
• We have shown that none of these schemes provides 

the non-repudiation service in itself.
♦ We have identified the concept of the Tamper 

Resistant Key Generation as the strong general 
countermeasure against these attacks.
• The non-repudiation of signatures extend transitively to 

the non-repudiation of the fair key generation.



Questions…

…are welcome.



Thank you…

…for your attention.
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