Note on a mobile security

... or How the Brave Permutation Rescued
a Naughty Keyboard...

Imite e

Petr Dvorak - @joshis_tweets Tomas Rosa
iOS Development Lead Senior Cryptologist, Raiffeisenbank

http://www.rb.cz/en/
http://www.rb.cz/en/

Outline

e Mobile Security Landscape
e Typical Topics in Security
e The Perils of Jailbreaking

e The Tale of the Brave Permutation

Mobile Security
Landscape

Mobile Security Landscape

e New Devices, New Problems
e New Devices, Old Problems

e The Murderer is always the
Gardener

http://www.flickr.com/photos/eckiblue/5905014055/
http://www.flickr.com/photos/eckiblue/5905014055/
http://www.flickr.com/photos/eckiblue/5905014055/
http://www.flickr.com/photos/eckiblue/5905014055/

Typical Topics

Incorrect Logging

Apple security blunder exposes
Lion login passwords in clear text

n PDT

e NSLogis not harmless!

By EmIl Protalinskl | May 6, 2012, B

Summary: With the latest Lion security update, Mac OS X 10.7.3, Apple has accidentally

o WO r kS W i t h t h e SySte m turned on a debug log file outside of the encrypted area that stores the user’s password in clear

text.
| Og, rea d a b I e by a nyo n e Update on May 9: Apple releases OS X Lion v10.7.4, fixes FileVault password bug
| Key Value e —
|ASLMessagelID 9529
A S ° h (Facility authpriv
t: GID 0
. pp WI C a pp fHost [FSEYe
iLevel 3
PID 298
:ReadGID 80
:ReadUID 0
' Disa ble NSLOg for the :S::der authorizationhost
iTimc 1328542316
[]
Ap p Sto re b u I |d !;;:manosﬁ ;07721000

‘Message DEBUGLOG | -[HomeDirMounter

: mountNetworkHomeWithURL:attributes:dirPath:username:] |
about to call _premountHomedir. url = afp://
triton.loca .l con/Users, userPathComponent = pft,
userID = 1031, name = pft, passwordAsUTF8String =

#define NSLog(...) —_—

Incorrect SSL handling

e SSL !=Super Secure Line

e iOS ChecksifCAis
trusted

e OCSP only for EV
certificates, works best
attempt

e http://mitmproxy.org

““ Path shares photos--oh, and

uploads your contacts, too

The popular photo sharing app is rocked by news that it uploads
contacts from iPhone users without permission.

"'f\)y Daniel Terdiman | Feb

28 .
S ¥ rolow

Path founder Dave Morin, speaking at the 20

At LT e WA

http://mitmproxy.org
http://mitmproxy.org

MITMProxy

Linkedin.com/1l1/v1l/p 2s/mallbox?nc=

<- 200
POST http://touch.www. Linkedin.com/1l1/v2

GET http://touch.www. linkedin.com/1l1/v1/p: s/home?start=0&count=60&nc=134155

. Linkedin.com/1li/vl/pages/init?nc=1341550926526

GET http://touch.www. linkedin.com/l1i/v1l/people/person?nc=
POST http://touch.www. Linkedin.com/l1/v2/metrics

GET http://media. Link: m/mpr/mpr/shrink_B0_80/p/2/000/049/3e4/1cB7dT4.]p
GET http://: % *din.com/scds/common/u/img/icon/icon_no_photo_no_bord

er_60x

[28] : thelp [*:8080]

NSURLConnection callback

— (BOOL)connection: (NSURLConnection *)connection
canAuthenticateAgainstProtectionSpace: (NSURLProtectionSpace*)space
{
SecTrustRef trust = [space serverTrust];
SecCertificateRef cert =
SecTrustGetCertificateAtIndex(trust, 0);

NSData* serverCertificateData =
(NSData*)SecCertificateCopyData(cert);

NSString* description =
(NSString*)SecCertificateCopySubjectSummary(certificate);

// check the data... “if (isOK(cert)) { phew(@”"It’s OK"); }”

http://developer.apple.com/documentation/Cocoa/Reference/Foundation/ObjC_classic/Classes/NSData.html
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/ObjC_classic/Classes/NSData.html

Insufficient design

e Too much weight on HTTPS

Ill

e [ypica
e Use HOTP/TOTP

session”is not always enough

o Study OAuth: Despite popular belief, 2 < 1

Jailbreak

root || !(2*root)

e You mustn't jailbreak!

e Jailbreaking = Full root access

e Attackers are tough & pretty smart!
e That sucks. Anything is possible

e The physics stops working

vt s

.
i

%

O s

)
. 3

T
)
.

EX ;
A o
. ".-.r ,‘vf./

Eix ““’«'N

e

root || !(2*root)

e You must jailbreak!

KelisSova

e Users are uninformed + don't care
e JB can happen without users consent
e ..thisis what exploits are about...

e Save them! Make your app ready for this

Demo - Cycript

root || !(2*root)

e Considering Jailbreak makes things hard
e Dealing with security on application level

e One of many issues: How to protect the
password?

How to protect the
password?

How to protect password?

e Malware on the phone = game over
e Password is stolen once you type it
e \What about a stolen phone?

e .. wait, why is it different from mallware?

IOS App in Action

Mallware?

| Crame OVer. |

| | | | >
App Password App
Started Entered Closed
User: The app is done... | | AEE&{:R@ steals a\y pko-me....
1 Sjsﬁem: Let’s keep ik ‘Fc?‘r Qa MML&« .. or you lose it somewhere..

iOS Docs:“The system [iOS] keeps suspended apps in memory for as long as
possible, removing them only when the amount of free memory gets low.”

Tale of a Brave
Permutation

The Problem

o UlTextField is very, very
naughty

e Even when it's“Secure”
it's not secure...

e How to eliminate
password footprint?

Text Color | HEEEE Default

Font VSystem 14.0

Min Font Size |
@ Adjust to Fit

Capitalization | None
Correction | Default
Keyboard | Number Pad
Appearance | Default

Return Key | Default

Demo - GDB

UlTextField Properties

e !ll'You need to set Text Color [| Defaul ¢

Font | System 14.0 ["‘i_’lﬁlgt

® AdeSt tO Fit Min Font Size |

@ Adjust to Fit

., Capitalization | None

® AUtO_Ca pita“zatiOn Correction | Default

Keyboard | Number Pad

o Auto_correction Appearance | Default

Return Key | Default

e Secure

e Not Apple-like. And is it really enough?

Framework / Application

o |et’s do better!
e |dea
e Custom keyboard
e One-Time Pad (Vernam cipher)
e Security context under strict control

e Cimplementation

Mechanism illustration

UlTextField

Keyboard
Created

©
S
(48]
o
O
>
)
N
o
Q.
Q.
<<

Security
Context
Created

C Securtity
module

UlTextField

App & Keyboard

C Securtity

module

Mechanism illustration

C L,
appended

User taps
a letter
Ln

Letter L, Ciphered
using OTP

App & Keyboard UlTextField

C Securtity
module

Mechanism illustration

Sent

[C_Li] i=1..Length

[C_Li] i=1..Length

ey App fetches H/TOTP Keyboard

presses sign- (R signature Destroyed.

In Received

[C_LiJi=1.Length binary garbage

Context H/TOTP Password

Deciphers sighature & Context
Password computed Destroyed

App Sends
Signed
Request.

How to (de)cipher the
text?

Preconditions

e Decimal PIN of 4 to 8 digits.
e Unpredictable cursor shifts are allowed.

o UlTextField must be able to process the
crypto-chars.

e The encryption/decryption as well as the
setup phase shall be pretty fast.

Permutation tables

e To encrypt a PIN digit, we use a particular
permutation tabler;: {0, ..., 9} = {0, ..., 9}.

e Each permutation table is chosen
randomly from the set of all possible 10!
(=3 628 800) bijective mappings.

Table Generator

e Thereis an algorithm that for each
permutation on n-element set computes
a unique number k, such that:

e O<k<nl

e |t was already noted in [1] that we can
obtain a fast permutation generator by
running this algorithm backwardes.

e So called shuffling, cf. [1], algorithms
3.3.2P and 3.4.2P.

Compact Key For Tables

e |nstead of generating random nonces for
each generator cycle (as suggested in [1]),
we generate just one random key k with
uniform distribution on <0, ..., n!).

e According to the factorial number system
[1], such k uniquely describes the
particular permutation on n-element set.

e \We then run alg. 3.3.2P in the simple
reverse order.

Generator Properties

e |t can be easily shown that our approach is
equivalent to generating random tweets

for each pass through the main cycle of
the reversed alg. 3.3.2P.

e We just collect all these nonces in one

number using the wonderful factorial
number system.

e Of course, there is an independent fresh
k for each table generated.

Setup Phase

e \We subdivide the 7-bit ASCII set to 9 code
pages by 10 characters each:

e 32,..41},{42, .. 51}, ..,1112, ..., 121}

e \We also generate 9 independent keys and
their corresponding permutation tables:

® (k1l M / k9) _> (rOI ooy r8)'

Encryption

e To encrypt j-th character typed p;, we
choose the permutation r;, where i = j mod
9, and compute:

e ¢i=ri(pj)+ 10%i + 32.

e The counterjis incremented with each
character encrypted regardless possible
cursor shifts, etc.

Decryption

e To decrypt a crypto-char ¢, we first decide
which table was used for its encryption:

e i=(c-32)div10.

e Then we use the inverse permutation to
obtain the original plaintext char:

e p=r1(c-10%-32).

e We prepare both riand r;-1 tables in setup.

Why This Way?

To allow unpredictable cursor shifts

we use the code page offset to encode the
keystream index i within each crypto-char.

To eliminates the risk of compromising the
whole table when the keystream index |
accidentally repeats

we use the general permutation tables
instead of a simple finite group operation
like xor, add, mul, etc.

Cautionary note

e This was pretty clever, right?
e Don't spoil it by doing something stupid.

e Wipe out all the keys and permutation
tables after having finished!

Thank you!

References

e [1] Knuth, D.-E.: The Art of Computer
Programming /Vol. 2 - Seminumerical
Algorithms, 3rd ed., Addison-Wesley, 1998.

e [2] http://developer.apple.com

e [3] http://theiphonewiki.com

o [4] http://www.cycript.org

http://developer.apple.com
http://developer.apple.com
http://theiphonewiki.com
http://theiphonewiki.com
http://www.cycript.org
http://www.cycript.org

