Note on a mobile security

... or How the Brave Permutation Rescued a Naughty Keyboard...

Petr Dvořák - @joshis_tweets iOS Development Lead

Tomáš Rosa Senior Cryptologist, Raiffeisenbank

Outline

- Mobile Security Landscape
- Typical Topics in Security
- The Perils of Jailbreaking
- The Tale of the Brave Permutation

Mobile Security Landscape

Mobile Security Landscape

- New Devices, New Problems
- New Devices, Old Problems
- The Murderer is always the Gardener

Typical Topics

Incorrect Logging

- NSLog is not harmless!
- Works with the system log, readable by anyone
 - AppSwitch app
- Disable NSLog for the App Store build

#define NSLog(...)

Apple security blunder exposes Lion login passwords in clear text

v Emil Protalinski I May 6, 2012, 8:52am PDT

Summary: With the latest Lion security update, Mac OS X 10.7.3, Apple has accidentally turned on a debug log file outside of the encrypted area that stores the user's password in clear text.

Update on May 9: Apple releases OS X Lion v10.7.4, fixes FileVault password bug

000	Message Inspector
Key	Value
ASLMessageID	9529
Facility	authpriv
GID	0
Host	-Mac
Level	3
PID	298
ReadGID	80
ReadUID	0
Sender	authorizationhost
Time	1328542316
TimeNanoSec	107721000
UID	0
Message	<pre>DEBUGLOG -[HomeDirMounter mountNetworkHomeWithURL:attributes:dirPath:username:] about to call _premountHomedir. url = afp:// triton.localcom/Users, userPathComponent = pft, userID = 1031, name = pft, passwordAsUTF8String =</pre>

Incorrect SSL handling

- SSL != Super Secure Line
- iOS Checks if CA is trusted
- OCSP only for EV certificates, works best attempt
- http://mitmproxy.org

MITMProxy

NSURLConnection callback

```
(BOOL)connection: (NSURLConnection *)connection
  canAuthenticateAgainstProtectionSpace: (NSURLProtectionSpace*)space
  SecTrustRef trust = [space serverTrust];
  SecCertificateRef cert =
      SecTrustGetCertificateAtIndex(trust, 0);
  NSData* serverCertificateData =
       (NSData*)SecCertificateCopyData(cert);
  NSString* description =
       (NSString*)SecCertificateCopySubjectSummary(certificate);
  // check the data... "if (isOK(cert)) { phew(@"It's OK"); }"
```

Insufficient design

- Too much weight on HTTPS
- Typical "session" is not always enough
 - Use HOTP / TOTP
- Study OAuth: Despite popular belief, 2 < 1

Jailbreak

root | !(2*root)

- You mustn't jailbreak!
- Jailbreaking = Full root access

- That sucks. Anything is possible
- The physics stops working

Saurik

#HITB

root | !(2*root)

Kelišová

- Users are uninformed + don't care
- JB can happen without users consent
- ... this is what exploits are about...
- Save them! Make your app ready for this

Demo - Cycript

root | !(2*root)

- Considering Jailbreak makes things hard
- Dealing with security on application level
- One of many issues: How to protect the password?

How to protect the password?

How to protect password?

- Malware on the phone = game over
 - Password is stolen once you type it
- What about a stolen phone?
 - ... wait, why is it different from mallware?

iOS App in Action

iOS Docs: "The system [iOS] keeps suspended apps in memory for as long as possible, removing them only when the amount of free memory gets low."

Tale of a Brave Permutation

The Problem

- UlTextField is very, very naughty
- Even when it's "Secure", it's not secure...
- How to eliminate password footprint?

Demo - GDB

UlTextField Properties

- !!! You need to set
 - Adjust to Fit
 - Auto-capitalization
 - Auto-correction
 - Secure

Not Apple-like. And is it really enough?

Framework / Application

- Let's do better!
- Idea
 - Custom keyboard
 - One-Time Pad (Vernam cipher)
 - Security context under strict control
 - C implementation

Mechanism illustration

Mechanism illustration

Mechanism illustration

How to (de)cipher the text?

Preconditions

- Decimal PIN of 4 to 8 digits.
- Unpredictable cursor shifts are allowed.
- UlTextField must be able to process the crypto-chars.
- The encryption/decryption as well as the setup phase shall be pretty fast.

Permutation tables

- To encrypt a PIN digit, we use a particular permutation table r_i : {0, ..., 9} \rightarrow {0, ..., 9}.
- Each permutation table is chosen randomly from the set of all possible 10! (=3 628 800) bijective mappings.

Table Generator

- There is an algorithm that for each permutation on n-element set computes a unique number k, such that:
 - $0 \le k < n!$
- It was already noted in [1] that we can obtain a fast permutation generator by running this algorithm backwards.
 - So called shuffling, cf. [1], algorithms
 3.3.2P and 3.4.2P.

Compact Key For Tables

- Instead of generating random nonces for each generator cycle (as suggested in [1]), we generate just one random key k with uniform distribution on <0, ..., n!).
- According to the factorial number system
 [1], such k uniquely describes the
 particular permutation on n-element set.
- We then run alg. 3.3.2P in the simple reverse order.

Generator Properties

- It can be easily shown that our approach is equivalent to generating random tweets for each pass through the main cycle of the reversed alg. 3.3.2P.
 - We just collect all these nonces in one number using the wonderful factorial number system.
 - Of course, there is an independent fresh k for each table generated.

Setup Phase

- We subdivide the 7-bit ASCII set to 9 code pages by 10 characters each:
 - {32, ..., 41}, {42, ..., 51}, ..., {112, ..., 121}.
- We also generate 9 independent keys and their corresponding permutation tables:
 - $(k_1, ..., k_9) \rightarrow (r_0, ..., r_8)$.

Encryption

- To encrypt j-th character typed p_j, we choose the permutation r_i, where i = j mod 9, and compute:
 - $c_j = r_i (p_j) + 10*i + 32.$
- The counter j is incremented with each character encrypted regardless possible cursor shifts, etc.

Decryption

- To decrypt a crypto-char c, we first decide which table was used for its encryption:
 - i = (c 32) div 10.
- Then we use the inverse permutation to obtain the original plaintext char:
 - $p = r_i^{-1} (c 10*i 32).$
- We prepare both r_i and r_i-1 tables in setup.

Why This Way?

- To allow unpredictable cursor shifts
- we use the code page offset to encode the keystream index i within each crypto-char.
- To eliminates the risk of compromising the whole table when the keystream index i accidentally repeats
- we use the general permutation tables instead of a simple finite group operation like xor, add, mul, etc.

Cautionary note

- This was pretty clever, right?
- Don't spoil it by doing something stupid.
- Wipe out all the keys and permutation tables after having finished!

Thank you!

References

- [1] Knuth, D.-E.: The Art of Computer Programming / Vol. 2 - Seminumerical Algorithms, 3rd ed., Addison-Wesley, 1998.
- [2] http://developer.apple.com
- [3] http://theiphonewiki.com
- [4] http://www.cycript.org