
Note on a mobile security
... or How the Brave Permutation Rescued

a Naughty Keyboard...

Tomáš Rosa
Senior Cryptologist, Rai"eisenbank

Petr Dvořák - @joshis_tweets
iOS Development Lead

http://www.rb.cz/en/
http://www.rb.cz/en/

Outline

• Mobile Security Landscape

• Typical Topics in Security

• The Perils of Jailbreaking

• The Tale of the Brave Permutation

Mobile Security
Landscape

Mobile Security Landscape

• New Devices, New Problems

• New Devices, Old Problems

• The Murderer is always the
Gardener

http://www.flickr.com/photos/eckiblue/5905014055/
http://www.flickr.com/photos/eckiblue/5905014055/
http://www.flickr.com/photos/eckiblue/5905014055/
http://www.flickr.com/photos/eckiblue/5905014055/

Typical Topics

Incorrect Logging

• NSLog is not harmless!

• Works with the system
log, readable by anyone

• AppSwitch app

• Disable NSLog for the
App Store build

#define NSLog(...)

Incorrect SSL handling

• SSL != Super Secure Line

• iOS Checks if CA is
trusted

• OCSP only for EV
certi$cates, works best
attempt

• http://mitmproxy.org

http://mitmproxy.org
http://mitmproxy.org

MITMProxy

NSURLConnection callback

- (BOOL)connection:(NSURLConnection *)connection
 canAuthenticateAgainstProtectionSpace:(NSURLProtectionSpace*)space
{
 SecTrustRef trust = [space serverTrust];
 SecCertificateRef cert =
 SecTrustGetCertificateAtIndex(trust, 0);

 NSData* serverCertificateData =
 (NSData*)SecCertificateCopyData(cert);

 NSString* description =
 (NSString*)SecCertificateCopySubjectSummary(certificate);

 // check the data... “if (isOK(cert)) { phew(@”It’s OK”); }”

}

http://developer.apple.com/documentation/Cocoa/Reference/Foundation/ObjC_classic/Classes/NSData.html
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/ObjC_classic/Classes/NSData.html

Insu%cient design

• Too much weight on HTTPS

• Typical “session” is not always enough

• Use HOTP / TOTP

• Study OAuth: Despite popular belief, 2 < 1

Jailbreak

root || !(2*root)

• You mustn’t jailbreak!

• Jailbreaking = Full root access

• Attackers are tough & pretty smart!

• That sucks. Anything is possible

• The physics stops working

Saurik

#HITB

root || !(2*root)

• You must jailbreak!

• Users are uninformed + don’t care

• JB can happen without users consent

• ... this is what exploits are about...

• Save them! Make your app ready for this

Kelišová

Demo - Cycript

root || !(2*root)

• Considering Jailbreak makes things hard

• Dealing with security on application level

• One of many issues: How to protect the
password?

How to protect the
password?

How to protect password?

• Malware on the phone = game over

• Password is stolen once you type it

• What about a stolen phone?

• ... wait, why is it di"erent from mallware?

iOS App in Action

iOS Docs: “The system [iOS] keeps suspended apps in memory for as long as
possible, removing them only when the amount of free memory gets low.”

App
Started

App
Closed

App
Dead

User: The app is done... Attacker steals a phone...
... or you lose it somewhere...

Mallware?
Game over...

Password
Entered

System: Let’s keep it for a while...

Tale of a Brave
Permutation

The Problem

• UITextField is very, very
naughty

• Even when it’s “Secure”,
it’s not secure...

• How to eliminate
password footprint?

Demo - GDB

UITextField Properties

• !!! You need to set

• Adjust to Fit

• Auto-capitalization

• Auto-correction

• Secure

• Not Apple-like. And is it really enough?

Framework / Application

• Let’s do better!

• Idea

• Custom keyboard

• One-Time Pad (Vernam cipher)

• Security context under strict control

• C implementation

Mechanism illustration
Ap

p
&

Ke
yb

oa
rd

U
IT

ex
tF

ie
ld

C
Se

cu
rt

ity

m
od

ul
e

User taps
a letter

Ln

Keyboard
Created

Security
Context
Created

Letter Ln Ciphered
using OTP

C_Ln
appended

User
presses sign-

in

App fetches
[C_Li]i=1..Length

Context
Deciphers
Password

H/TOTP
signature
computed

Keyboard
Destroyed.

Password
& Context
Destroyed

App Sends
Signed

Request.

H/TOTP
signature
Received

Sent
[C_Li]i=1..Length

Mechanism illustration
Ap

p
&

Ke
yb

oa
rd

U
IT

ex
tF

ie
ld

C
Se

cu
rt

ity

m
od

ul
e

User taps
a letter

Ln

Keyboard
Created

Security
Context
Created

Letter Ln Ciphered
using OTP

C_Ln
appended

User
presses sign-

in

App fetches
[C_Li]i=1..Length

Context
Deciphers
Password

H/TOTP
signature
computed

Keyboard
Destroyed.

Password
& Context
Destroyed

App Sends
Signed

Request.

H/TOTP
signature
Received

Ln C_Ln

Sent
[C_Li]i=1..Length

Mechanism illustration
Ap

p
&

Ke
yb

oa
rd

U
IT

ex
tF

ie
ld

C
Se

cu
rt

ity

m
od

ul
e

User taps
a letter

Ln

Keyboard
Created

Security
Context
Created

Letter Ln Ciphered
using OTP

C_Ln
appended

User
presses sign-

in

App fetches
[C_Li]i=1..Length

Context
Deciphers
Password

H/TOTP
signature
computed

Keyboard
Destroyed.

Password
& Context
Destroyed

App Sends
Signed

Request.

H/TOTP
signature
Received

[C_Li]i=1..Length binary garbage

Sent
[C_Li]i=1..Length

[C_Li]i=1..Length

How to (de)cipher the
text?

Preconditions

• Decimal PIN of 4 to 8 digits.

• Unpredictable cursor shifts are allowed.

• UITextField must be able to process the
crypto-chars.

• The encryption/decryption as well as the
setup phase shall be pretty fast.

Permutation tables

• To encrypt a PIN digit, we use a particular
permutation table ri : {0, ..., 9} → {0, ..., 9}.

• Each permutation table is chosen
randomly from the set of all possible 10!
(=3 628 800) bijective mappings.

Table Generator
• There is an algorithm that for each

permutation on n-element set computes
a unique number k, such that:

• 0 ≤ k < n!

• It was already noted in [1] that we can
obtain a fast permutation generator by
running this algorithm backwards.

• So called shu(ing, cf. [1], algorithms
3.3.2P and 3.4.2P.

Compact Key For Tables
• Instead of generating random nonces for

each generator cycle (as suggested in [1]),
we generate just one random key k with
uniform distribution on <0, ..., n!).

• According to the factorial number system
[1], such k uniquely describes the
particular permutation on n-element set.

• We then run alg. 3.3.2P in the simple
reverse order.

Generator Properties

• It can be easily shown that our approach is
equivalent to generating random tweets
for each pass through the main cycle of
the reversed alg. 3.3.2P.

• We just collect all these nonces in one
number using the wonderful factorial
number system.

• Of course, there is an independent fresh
k for each table generated.

Setup Phase

• We subdivide the 7-bit ASCII set to 9 code
pages by 10 characters each:

• {32, ..., 41}, {42, ..., 51}, ..., {112, ..., 121}.

• We also generate 9 independent keys and
their corresponding permutation tables:

• (k1, ..., k9) → (r0, ..., r8).

Encryption

• To encrypt j-th character typed pj, we
choose the permutation ri, where i = j mod
9, and compute:

• cj = ri (pj) + 10*i + 32.

• The counter j is incremented with each
character encrypted regardless possible
cursor shifts, etc.

Decryption

• To decrypt a crypto-char c, we $rst decide
which table was used for its encryption:

• i = (c - 32) div 10.

• Then we use the inverse permutation to
obtain the original plaintext char:

• p = ri-1 (c - 10*i - 32).

• We prepare both ri and ri-1 tables in setup.

Why This Way?
• To allow unpredictable cursor shifts

• we use the code page o"set to encode the
keystream index i within each crypto-char.

• To eliminates the risk of compromising the
whole table when the keystream index i
accidentally repeats

• we use the general permutation tables
instead of a simple $nite group operation
like xor, add, mul, etc.

Cautionary note

• This was pretty clever, right?

• Don’t spoil it by doing something stupid.

• Wipe out all the keys and permutation
tables after having $nished!

Thank you!

References

• [1] Knuth, D.-E.: The Art of Computer
Programming / Vol. 2 - Seminumerical
Algorithms, 3rd ed., Addison-Wesley, 1998.

• [2] http://developer.apple.com

• [3] http://theiphonewiki.com

• [4] http://www.cycript.org

http://developer.apple.com
http://developer.apple.com
http://theiphonewiki.com
http://theiphonewiki.com
http://www.cycript.org
http://www.cycript.org

