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Notation Notes

• ⨁ denotes (vector) addition modulo 2 

- when clear from the context, we use simply + and ⨁ interchangeably



Runtime Models

• These models capture the context in which the cryptographic scheme shall 
remain secure 

• They affect the formal definition and assumptions used for the security proof 

- however, the correspondence is not one-to-one 

- there are consensual rules of what to use when



Black Box Runtime Model
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White Box Model
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Quantum Box Model
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Even-Mansour Cipher

• P is (pseudo)random permutation (S-box) 

• k(1) is the first part of the key 

• k(2) is the second part of the key 

• m is the input plaintext, c is the output ciphertext

c = E(m) = P[m⊕ k (1) ]⊕ k (2)



Periodisation of the Even-Mansour Cipher

• So, k(1) is can be found as the period of f(x) 

- also called a linear structure, here 

• k(2) is then determined easily from a simple linear equation

y = f (x) = E(x)⊕ P[x]= P[x⊕ k (1) ]⊕ k (2)⊕ P[x]
⇒ f (x⊕ k (1) ) = f (x)



Vector Oriented Description of y = E(x), 3-bit Example
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S-boxes for 3-bit Example

P1[(x1,x2 ,x3)]= x3 + x1x2 = x2 + x3 + x1x2
P2[(x1,x2 ,x3)]= x1 + x2x3 = x1 + x3 + x2x3
P3[(x1,x2 ,x3)]= x2 + x1x3 = x1 + x2 + x1x3



Vector Description of the Periodisation
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Periodisation per One Index (Bit-by-Bit)
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In General - Periodisation Index by Index

fi(x
!
) = ai
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+ζ i , 1≤ i ≤ n

for our experiment n = 3



In Particular
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We start with the BV-style superposition
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We apply the quantum oracle operator for fi(x), 1≤ i ≤ n, n = 3
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We use the final Hadamard transform on the first part of the register 
for the desired interference
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Entanglement Masking - the Idea

• If there is the oracle E(x) on a quantum computer implemented for some authorised 
reason (e.g. as a communication sub-module), then the honest calling of this 
module would be with an eigenstate, not with the equal superposition inputs. 

• So, we are searching for such a modification that will on one hand work with 
eigenstates in the unchanged way, so E(x) still does what it shall do. 

• On the other hand, the masking shall defeat the attacking algorithm when there is 
the input superposition entered. 

• We achieve this through entanglement with internal (to E(x)) working qubits that 
breaks the desired interference in the final Hadamard transform of our attack.



Masking the E(x) Oracle via Internal Input Entanglement 
- the initial BV superposition then becomes this
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Entanglement corrupts the final Hadamard transform interference
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so, we end up with an equal superposition with respect to the first part of the register 


