RBI Quantum Hackathon Workbench

Tomas Rosa* and Jiri Pavlu, CBCC of RBI in Prague

Revision History

- 22/04/2019/Tom, direct application of BV elaborated
- 24/04/2019/Tom, S-Box indices permuted to reflect actual Qiskit implementation
- 5/05/2019/Tom, periodisation details, cryptography runtime models
- 9/05/2019/Tom, entanglement masking

Notation Notes

- \oplus denotes (vector) addition modulo 2
- when clear from the context, we use simply + and \oplus interchangeably

Runtime Models

- These models capture the context in which the cryptographic scheme shall remain secure
- They affect the formal definition and assumptions used for the security proof
- however, the correspondence is not one-to-one
- there are consensual rules of what to use when

Black Box Runtime Model

Grey Box Model

White Box Model

Quantum Box Model

Even-Mansour Cipher

$$
c=E(m)=P\left[m \oplus k^{(1)}\right] \oplus k^{(2)}
$$

- P is (pseudo)random permutation (S-box)
- $k^{(1)}$ is the first part of the key
- $k^{(2)}$ is the second part of the key
- m is the input plaintext, c is the output ciphertext

Periodisation of the Even-Mansour Cipher

$$
\begin{aligned}
& y=f(x)=E(x) \oplus P[x]=P\left[x \oplus k^{(1)}\right] \oplus k^{(2)} \oplus P[x] \\
& \Rightarrow f\left(x \oplus k^{(1)}\right)=f(x)
\end{aligned}
$$

- So, $k^{(1)}$ is can be found as the period of $f(x)$
- also called a linear structure, here
- $k^{(2)}$ is then determined easily from a simple linear equation

Vector Oriented Description of $y=E(x)$, 3-bit Example

$$
\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{c}
P_{1}\left[\left(x_{1}, x_{2}, x_{3}\right)+\left(k_{1}^{(1)}, k_{2}^{(1)}, k_{3}^{(1)}\right)\right] \\
P_{2}\left[\left(x_{1}, x_{2}, x_{3}\right)+\left(k_{1}^{(1)}, k_{2}^{(1)}, k_{3}^{(1)}\right)\right] \\
P_{3}\left[\left(x_{1}, x_{2}, x_{3}\right)+\left(k_{1}^{(1)}, k_{2}^{(1)}, k_{3}^{(1)}\right)\right]
\end{array}\right)+\left(\begin{array}{c}
k_{1}^{(2)} \\
k_{2}^{(2)} \\
k_{3}^{(2)}
\end{array}\right)
$$

S-boxes for 3-bit Example

$$
\begin{aligned}
& P_{1}\left[\left(x_{1}, x_{2}, x_{3}\right)\right]=x_{3}+x_{1} x_{2}=x_{2}+x_{3}+x_{1} x_{2} \\
& P_{2}\left[\left(x_{1}, x_{2}, x_{3}\right)\right]=x_{1}+\overline{x_{2}} x_{3}=x_{1}+x_{3}+x_{2} x_{3} \\
& P_{3}\left[\left(x_{1}, x_{2}, x_{3}\right)\right]=x_{2}+x_{1} \overline{x_{3}}=x_{1}+x_{2}+x_{1} x_{3}
\end{aligned}
$$

Vector Description of the Periodisation

$$
\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{c}
P_{1}\left[\left(x_{1}, x_{2}, x_{3}\right)+\left(k_{1}^{(1)}, k_{2}^{(1)}, k_{3}^{(1)}\right)\right] \\
P_{2}\left[\left(x_{1}, x_{2}, x_{3}\right)+\left(k_{1}^{(1)}, k_{2}^{(1)}, k_{3}^{(1)}\right)\right] \\
P_{3}\left[\left(x_{1}, x_{2}, x_{3}\right)+\left(k_{1}^{(1)}, k_{2}^{(1)}, k_{3}^{(1)}\right)\right]
\end{array}\right)+\left(\begin{array}{c}
k_{1}^{(2)} \\
k_{2}^{(2)} \\
k_{3}^{(2)}
\end{array}\right)+\left(\begin{array}{c}
P_{1}\left[\left(x_{1}, x_{2}, x_{3}\right)\right] \\
P_{2}\left[\left(x_{1}, x_{2}, x_{3}\right)\right] \\
P_{3}\left[\left(x_{1}, x_{2}, x_{3}\right)\right]
\end{array}\right)
$$

Periodisation per One Index (Bit-by-Bit)

$$
\begin{aligned}
& \text { Let } \vec{x}=\left(x_{1}, x_{2}, x_{3}\right) \in F_{2}^{3} \\
& f_{1}(\vec{x})=E_{1}(\vec{x})+P_{1}(\vec{x}) \\
& =P_{1}\left[\left(x_{1}, x_{2}, x_{3}\right)+\left(k_{1}^{(1)}, k_{2}^{(1)}, k_{3}^{(1)}\right)\right]+P_{1}\left[\left(x_{1}, x_{2}, x_{3}\right)\right]+k_{1}^{(2)} \\
& =x_{2}+k_{2}^{(1)}+x_{3}+k_{3}^{(1)}+\left(x_{1}+k_{1}^{(1)}\right)\left(x_{2}+k_{2}^{(1)}\right)+x_{2}+x_{3}+x_{1} x_{2}+k_{1}^{(2)} \\
& =k_{2}^{(1)} x_{1}+k_{1}^{(1)} x_{2}+k_{2}^{(1)}+k_{3}^{(1)}+k_{1}^{(1)} k_{2}^{(1)}+k_{1}^{(2)} \\
& =\left(k_{2}^{(1)}, k_{1}^{(1)}, 0\right) \cdot\left(x_{1}, x_{2}, x_{3}\right)+k_{2}^{(1)}+k_{3}^{(1)}+k_{1}^{(1)} k_{2}^{(1)}+k_{1}^{(2)} \\
& =\overrightarrow{a_{1}} \cdot \vec{x}+\zeta_{1}
\end{aligned}
$$

In General - Periodisation Index by Index

$$
f_{i}(\vec{x})=\overrightarrow{a_{i}} \cdot \vec{x}+\zeta_{i}, 1 \leq i \leq n
$$

for our experiment $n=3$

In Particular

$$
\begin{aligned}
& \overrightarrow{a_{1}}=\left(k_{2}^{(1)}, k_{1}^{(1)}, 0\right), \zeta_{1}=k_{2}^{(1)}+k_{3}^{(1)}+k_{1}^{(1)} k_{2}^{(1)}+k_{1}^{(2)} \\
& \overrightarrow{a_{2}}=\left(0, k_{3}^{(1)}, k_{2}^{(1)}\right), \zeta_{2}=k_{1}^{(1)}+k_{3}^{(1)}+k_{2}^{(1)} k_{3}^{(1)}+k_{2}^{(2)} \\
& \overrightarrow{a_{3}}=\left(k_{3}^{(1)}, 0, k_{1}^{(1)}\right), \zeta_{3}=k_{1}^{(1)}+k_{2}^{(1)}+k_{1}^{(1)} k_{3}^{(1)}+k_{3}^{(2)} \\
& \overrightarrow{a_{i}} \in F_{2}^{3}, \zeta_{i} \in F_{2}
\end{aligned}
$$

We start with the BV-style superposition

$$
\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{x \in F_{2_{2}^{n}}}|x\rangle \otimes\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)
$$

We apply the quantum oracle operator for $f_{i}(x), 1 \leq i \leq n, n=3$

$$
\begin{aligned}
& |x\rangle \otimes|w\rangle \mapsto|x\rangle \otimes\left|w \oplus f_{i}(\vec{x})\right\rangle \text {, where } f_{i}(\vec{x})=\overrightarrow{a_{i}} \cdot \vec{x}+\zeta_{i} \\
& \left|\psi_{2, i}\right\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{\vec{x} \in F_{2}^{n}} \underbrace{(-1)^{\overrightarrow{a_{i}} \cdot \vec{x}+\zeta_{i}}|x\rangle \otimes\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)}_{\text {phase kickback effect }} . l
\end{aligned}
$$

We use the final Hadamard transform on the first part of the register for the desired interference

$$
\begin{aligned}
& \left|\psi_{3, i}\right\rangle=\frac{1}{2^{n}} \sum_{\bar{y} \in F_{2}^{n}} \sum_{x \in F_{2}^{n}}(-1)^{\bar{a}_{i} \bar{x}+\xi_{i}}(-1)^{\bar{x} \cdot \bar{y}}|y\rangle \otimes\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \\
& =(-1)^{\xi_{i}} \frac{1}{2^{n}} \sum_{y \in F_{2}^{n}} \sum_{i \in F_{2}^{n}}(-1)^{\left(\overrightarrow{\left.a_{i}+\bar{y}\right) \cdot \tilde{x}}|y\rangle \otimes\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)\right.} \\
& =\underbrace{(-1)^{\xi_{i}} \mid}_{\text {onase }} \underbrace{\left|a_{i}\right\rangle}_{\text {direct key bits }} \otimes\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)
\end{aligned}
$$

Entanglement Masking - the Idea

- If there is the oracle $E(x)$ on a quantum computer implemented for some authorised reason (e.g. as a communication sub-module), then the honest calling of this module would be with an eigenstate, not with the equal superposition inputs.
- So, we are searching for such a modification that will on one hand work with eigenstates in the unchanged way, so $E(x)$ still does what it shall do.
- On the other hand, the masking shall defeat the attacking algorithm when there is the input superposition entered.
- We achieve this through entanglement with internal (to $E(x)$) working qubits that breaks the desired interference in the final Hadamard transform of our attack.

Masking the $E(x)$ Oracle via Internal Input Entanglement - the initial BV superposition then becomes this

$$
\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{2^{n}}}(\sum_{x \in F_{2}^{n}}|x\rangle \otimes \underbrace{}_{\text {original input }}|x\rangle) \otimes\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)
$$

Entanglement corrupts the final Hadamard transform interference

the entangled |x> sibling prevents the desired interference to occur, so, we end up with an equal superposition with respect to the first part of the register

