QuBit Conference PRAGUE 2019

Evil Qubits The Threat of Quantum Cryptanalysis Explained

Tomas Rosa Raiffeisen BANK International Cryptology and Biometrics Competence Centre

Postulate #1: Qubit state belongs to Hilbert space of dimension 2

Postulate #2: Qubit evolution is given by a unitary transformation

$$i\hbar \frac{\partial |\psi\rangle}{\partial t} = H |\psi\rangle$$
$$|\psi_t\rangle = U_t |\psi_{t_0}\rangle, \ U_t = e^{\frac{-iHt}{\hbar}}$$
$$e^A = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \dots$$

Postulate #3: Projective probabilistic measurement

- When measured, quantum state collapses into one of particular eigenstates comprising the basis vectors of the corresponding Hilbert space.
- For a qubit, these are labeled |0> and |1>. So called computational basis.
- Superposition cannot be seen directly. It governs the probability of the measurement outcome; coefficients ω_i called **probability amplitudes**.

 $P[result = |i\rangle]$

$$] = \left| \omega_i \right|^2 = \omega_i \cdot \omega_i^*$$

Postulate #4: Qubit register state belongs to $H_2 \otimes H_2 \otimes \dots \otimes H_2$

- dimension 2^n and can be in a superposition of all of its 2^n eigenstates.
 - called quantum parallelism
 - probability of the measurement outcome
 - eigenstates (computational basis) **[00...0>**, **[00...1>**, ..., **[11...1>**

• Exponencial growth of dimension: n-qubit register belongs to Hilbert space of

- together with linear operators acting on this register, this is the source of so-

- however, the superposition still cannot be seen directly, it still just governs the

- sometimes, the tensor product is noted explicitly $|00...0\rangle = |0\rangle|0\rangle...|0\rangle$, etc.

Separable Register State Example (Note the Pure Tensor Product...)

Entanglement (Note the Unavoidable Sum of Tensor Products...)

 $\left|\psi\right\rangle = \frac{1}{\sqrt{2}}\left|00\right\rangle + \frac{1}{\sqrt{2}}\left|11\right\rangle$

Computational Aspects

- Actually, we have already reformulated the quantum mechanics postulates slightly to tailor them to qubits and qubit registers.
- We can continue further to derive computational paradigms. For instance:
 - quantum parallelism (already noted above)
 - interference (constructive / destructive, enabled by the complex amplitudes)
 - entangled states (seen as an extra power for algorithms)

Computational Interference

$\frac{\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}}{\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}}$

This was just a computational version of Mach-Zehnder experiment

Beamsplitter

Time to Say: "Hello World!"

ACTIVE: USERS

	Q0	Q1	Q2	Q3	Q4
Frequency (GHz)	5.25	5.30	5.35	5.43	5.18
T1 (μs)	47.80	57.00	48.00	47.00	46.70
T2 (μs)	40.10	19.80	33.40	17.50	13.50
Gate error (10^{-3})	0.86	0 9/	1 03	2 1 5	3 26
Readout error (10^{-2})	6.40	6.90	2.90	4.80	10.90
MultiQubit gate error (10^{-2})		cx1_0 2.74	cx2_0 2.16	cx3_2 7.96	cx4_2 7.33
			cx2_1 2.75	CX3_4 5.69	

ACTIVE: CALIBRATING

Deutsch-Jozsa: Quantum Computation "Hello World"

- Let us have *f*: {0, 1}^N → {0, 1} that is promised to be either constant or balanced (nothing else). Balanced means the function vector has *exactly* 2^{N-1} ones (and zeros).
 - we have to decide what kind of function we have
 - to give a deterministic answer classically, we need at least $2^{N-1} + 1$ invocations of f
 - on a quantum computer, it suffices to do just one invocation of f
 - exponential speed up thanks to the quantum parallelism and interference

Simple Case for N = 1

DJ Quantum Computation Scheme (with balanced f example)

Device: ibmqx4

Quantum State: Computation Basis

Quantum Circuit

Download CSV

OPENQASM 2.0

```
1 include "qelib1.inc";
2 qreg q[5];
3 creg c[5];
4 
5 X q[0];
6 h q[0];
7 h q[1];
8
```

🛨 Open in Composer

Device: ibmqx4

Quantum Circuit

Download CSV

OPENQASM 2.0

1	<pre>include "qelib1.inc";</pre>
2	<pre>qreg q[5];</pre>
3	<pre>creg c[5];</pre>
4	
5	x q[0];
6	h q[0];
7	h q[1];
8	

🛨 Open in Composer

RSA (since 1977)

RSA - Going Back and Forth

hard easy way

How to get the private exponent "d"?

N = pq $d = e^{-1} \mod lcm(p-1,q-1)$ easy way if we can factorise N

Period Finding and Factorisation (Shor's Algorithm)

Let f(k)and let us find

 $\Rightarrow a^{k+r} \mod N = a^k \mod N$

$$= a^{k} \mod N$$

r: $f(k+r) = f(k)$

 $\Rightarrow a^r \mod N = 1$, so N divides $a^r - 1$ \Rightarrow for even r, N divides $(a^{\frac{r}{2}} + 1)(a^{\frac{r}{2}} - 1)$

 \Rightarrow for $N \nmid (a^{\frac{r}{2}} \pm 1)$, $gcd(a^{\frac{r}{2}} \pm 1, N)$ are factors of N

Quantum Parallelism...

Quantum Parallelism... (Example)

$\left|\psi\right\rangle = \frac{1}{\sqrt{M}} \sum_{k=0}^{M-1} \left|k\right\rangle \left|a^{k} \mod N\right\rangle$

M = 16, N = 15, a = 7 $\left|\psi\right\rangle = \frac{1}{4} \left(\left|0\right\rangle\left|1\right\rangle + \left|1\right\rangle\left|7\right\rangle + \left|2\right\rangle\left|4\right\rangle + \left|3\right\rangle\left|13\right\rangle + \left|4\right\rangle\left|1\right\rangle + \left|5\right\rangle\left|7\right\rangle + \dots + \left|15\right\rangle\left|13\right\rangle\right)$

Feeling of the Period

 $\left|\psi\right\rangle = \frac{1}{4} \left(\left|0\right\rangle + \left|4\right\rangle + \left|8\right\rangle + \left|12\right\rangle\right) \left|1\right\rangle$ $+\frac{1}{4}\left(\left|1\right\rangle+\left|5\right\rangle+\left|9\right\rangle+\left|13\right\rangle\right)\left|7\right\rangle$ $+\frac{1}{4}(|2\rangle+|6\rangle+|10\rangle+|14\rangle)|4\rangle$ $+\frac{1}{4}(|3\rangle+|7\rangle+|11\rangle+|15\rangle)|13\rangle$

Quantum Fourier Transform (QFT) of Eigenstate

fixed phase swallow

interference control

Superposing QFT

 $\sum_{(u)} |ur+k\rangle |a^k\rangle \to \frac{1}{\sqrt{m}} \sum_{(u)} \sum_{\nu=0}^{m-1} e^{\frac{2\pi i(ur+k)\nu}{m}} |\nu\rangle |a^k\rangle$

fixed phase swallow

interference control

Exploiting the Parallelism via QFT Interference

It is not only about the Shor's algorithm

- **Grover's search method**
- Simon's period finding
- Hidden subgroup problem
 - exponencial speed-up
 - generalises Simon's, Shor's, and a lot of other algorithms

- quadratic speed-up, usable for both asymmetric and symmetric algorithms

- exponencial speed-up, usable for both asymmetric and symmetric algorithms

http://quantumalgorithmzoo.org

Main Challenges for Quantum Computers Today

- We have a **Noisy Intermediate-Scale** Quantum (NISQ) technology
 - coherence time
 - scalability

IBM Q quantum computing systems

Refrigerator to cool qubits to 10 - 15 mK with a mixture of ³He and ⁴He

Chip with superconducting qubits and resonators

PCB with the qubit chip at 15 mK Protected from the environment by multiple shields

How many qubits are required to see quantum improvement?

Problem

Quantum Chemistr

Optimization (specifi

Heuristic machine lear

Shor's algorithm

Big Linear Algebra Programs (FEM)

Estimate of the number of "good" qubits required before quantum computing shows advantage over conventional:

	Type of Quantum Computer	# Qubits for advantage (est)	Years to advantage (est)
У	NISQ/Approximate QC	10 ² ~10 ³	< 5 ?
ic)	NISQ/Approximate QC	10 ² ~10 ³	< 5 ?
ning	NISQ/Approximate QC	10 ² ~10 ³	< 5 ?
	Universal fault- tolerant QC	> 10 ⁸	> 10~15 if possible
	Universal fault- tolerant QC	> 108	> 10~15 if possible
			Sutor, 2018]

"Quantum Computing: Progress and Prospects"

Key Finding 1: Given the current state of quantum computing and recent rates of progress, it is highly unexpected that a quantum computer that can compromise RSA 2048 or comparable discrete logarithm- based public key cryptosystems will be built within the next decade.

- http://nap.edu/25196

"Quantum Computing: Progress and Prospects"

Key Finding 10: Even if a quantum computer that can decrypt current cryptographic ciphers is more than a decade off, the hazard of such a machine is high enough—and the time frame for transitioning to a new security protocol is sufficiently long and uncertain—that prioritization of the development, standardization, and deployment of **post-quantum cryptography** is critical for minimizing the chance of a potential security and privacy disaster.

- http://nap.edu/25196

Conclusions

- Quantum computers are not an immediate threat, they are rather a big financial mathematics, now
- cryptanalysis
- Follow upcoming recommendation of cryptologists

opportunity for other areas, such as e.g. chemistry, optimisation tasks, and

However, they are mid / long-term threat, so be careful about retroactive

• Be careful when implementing symmetric encryption on quantum hardware

When appropriate, migrate to a quantum resistant public key cryptosystem

Physics is like sex: sure, it may give some practical results, but that's not why we do it.

Richard Phillips Feynman (1918 - 1988, Nobel Prize in Physics 1965)

