

Postulate \#1: Qubit state belongs to Hilbert space of dimension 2

$$
|\psi\rangle=\omega_{0}|0\rangle+\omega_{1}|1\rangle=e^{i \gamma}\left(\cos \frac{\theta}{2}|0\rangle+e^{i \varphi} \sin \frac{\theta}{2}|1\rangle\right), \omega_{i} \in \underset{\left|\omega_{0}\right|^{2}+\left|\omega_{1}\right|^{2}=1}{\mathbb{C}}
$$

Postulate \#2: Qubit evolution is given by a unitary transformation

Postulate \#3: Projective probabilistic measurement

- When measured, quantum state collapses into one of particular eigenstates comprising the basis vectors of the corresponding Hilbert space.
- For a qubit, these are labeled $\mid 0>$ and $\mid 1>$. So called computational basis.
- Superposition cannot be seen directly. It governs the probability of the measurement outcome; coefficients ω_{i} called probability amplitudes.

$$
P[\text { result }=|i\rangle]=\left|\omega_{i}\right|^{2}=\omega_{i} \cdot \omega_{i}^{*}
$$

Postulate \#4: Qubit register state belongs to $\boldsymbol{H}_{2} \otimes \boldsymbol{H}_{2} \otimes \ldots \otimes \boldsymbol{H}_{2}$

- Exponencial growth of dimension: n-qubit register belongs to Hillbert space of dimension 2^{n} and can be in a superposition of all of its 2^{n} eigenstates.
- together with linear operators acting on this register, this is the source of socalled quantum parallelism
- however, the superposition still cannot be seen directly, it still just governs the probability of the measurement outcome
- eigenstates (computational basis) |00...0>, |00...1>, ..., |11...1>
- sometimes, the tensor product is noted explicitly $|00 \ldots 0>=|0>|0>\ldots| 0>$, etc.

Separable Register State Example (Note the Pure Tensor Product...)

Entanglement (Note the Unavoidable Sum of Tensor Products...)

$$
|\psi\rangle=\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle
$$

Computational Aspects

- Actually, we have already reformulated the quantum mechanics postulates slightly to tailor them to qubits and qubit registers.
- We can continue further to derive computational paradigms. For instance:
- quantum parallelism (already noted above)
- interference (constructive / destructive, enabled by the complex amplitudes)
- entangled states (seen as an extra power for algorithms)

Computational Interference

This was just a computational version of Mach-Zehnder experiment

Time to Say: "Hello World!"

Deutsch-Jozsa: Quantum Computation "Hello World"

- Let us have $\boldsymbol{f}:\{0,1\}^{\mathrm{N}} \rightarrow\{\mathbf{0}, \mathbf{1 \}}$ that is promised to be either constant or balanced (nothing else). Balanced means the function vector has exactly $\mathbf{2}^{\mathrm{N}-1}$ ones (and zeros).
- we have to decide what kind of function we have
- to give a deterministic answer classically, we need at least $\mathbf{2}^{N-1}+\mathbf{1}$ invocations of f
- on a quantum computer, it suffices to do just one invocation of f
- exponential speed up thanks to the quantum parallelism and interference

Simple Case for $N=1$

$x, f(x)$
Constant function
Balanced function

0

1
0
0
1
0
1

1
0

DJ Quantum Computation Scheme (with balanced f example)

Quantum State: Computation Basis

Quantum Circuit

Quantum State: Computation Basis

Quantum Circuit

Qiskit

Guth Nit Tix Whtich

RSA (since 1977)

easy way

$$
x=y^{e} \bmod N
$$

hard way
$x, y<N$

RSA - Going Back and Forth

$x^{d} \bmod N=y$
 hard easy way

$$
x, y<N
$$

How to get the private exponent "d"?

$$
\begin{aligned}
& N=p q \\
& d=e^{-1} \bmod \operatorname{lcm}(p-1, q-1) \\
& \underbrace{}_{\text {easy way if we can factorise } N}
\end{aligned}
$$

Period Finding and Factorisation (Shor's Algorithm)

$$
\begin{aligned}
& \quad \operatorname{Let} f(k)=a^{k} \bmod N \\
& \text { and let us find } r: f(k+r)=f(k) \\
& \Rightarrow a^{k+r} \bmod N=a^{k} \bmod N \\
& \Rightarrow a^{r} \bmod N=1, \text { so } N \text { divides } a^{r}-1 \\
& \Rightarrow \text { for even } r, N \text { divides }\left(a^{\frac{r}{2}}+1\right)\left(a^{\frac{r}{2}}-1\right) \\
& \Rightarrow \text { for } N \nmid\left(a^{\frac{L}{2}} \pm 1\right), \operatorname{gcd}\left(a^{\frac{L}{2}} \pm 1, N\right) \text { are factors of } N
\end{aligned}
$$

Quantum Parallelism...

$$
|\psi\rangle=\frac{1}{\sqrt{M}} \sum_{k=0}^{M-1}|k\rangle\left|a^{k} \bmod N\right\rangle
$$

Quantum Parallelism... (Example)

$$
|\psi\rangle=\frac{1}{\sqrt{M}} \sum_{k=0}^{M-1}|k\rangle\left|a^{k} \bmod N\right\rangle
$$

$$
\begin{aligned}
& M=16, N=15, a=7 \\
& |\psi\rangle=\frac{1}{4}(|0\rangle|1\rangle+|1\rangle|7\rangle+|2\rangle|4\rangle+|3\rangle|13\rangle+|4\rangle|1\rangle+|5\rangle|7\rangle+\ldots+|15\rangle|13\rangle)
\end{aligned}
$$

Feeling of the Period

$$
\begin{aligned}
|\psi\rangle & =\frac{1}{4}(|0\rangle+|4\rangle+|8\rangle+|12\rangle)|1\rangle \\
& +\frac{1}{4}(|1\rangle+|5\rangle+|9\rangle+|13\rangle)|7\rangle \\
& +\frac{1}{4}(|2\rangle+|6\rangle+|10\rangle+|14\rangle)|4\rangle \\
& +\frac{1}{4}(|3\rangle+|7\rangle+|11\rangle+|15\rangle)|13\rangle
\end{aligned}
$$

Quantum Fourier Transform (QFT) of Eigenstate

$$
\begin{aligned}
& |u r+k\rangle\left|a^{k}\right\rangle \rightarrow \frac{1}{\sqrt{m}} \sum_{v=0}^{m-1} e^{\frac{2 \pi i(u r+k) v}{m}}|v\rangle\left|a^{k}\right\rangle \\
& =\frac{1}{\sqrt{m}}(\sum_{v=0}^{m-1} e^{\frac{2 \pi i k v}{m}} \cdot \underbrace{e^{\frac{2 \pi i u v}{r}}}|v\rangle\left|a^{k}\right\rangle) \\
& \text { fixed phase swallow }
\end{aligned}
$$

Superposing QFT

> fixed phase swallow
> interference control

Exploiting the Parallelism via QFT Interference

It is not only about the Shor's algorithm

- Grover's search method
- quadratic speed-up, usable for both asymmetric and symmetric algorithms
- Simon's period finding
- exponencial speed-up, usable for both asymmetric and symmetric algorithms
- Hidden subgroup problem
- exponencial speed-up
- generalises Simon's, Shor's, and a lot of other algorithms

Main Challenges for Quantum Computers Today

- We have a Noisy Intermediate-Scale Quantum (NISQ) technology
- coherence time
- scalability

IBM Q quantum computing systems

Chip with superconducting qubits and resonators

How many qubits are required to see quantum improvement?

Estimate of the number of "good" qubits required before quantum computing shows advantage over conventional:

Problem	Type of Quantum Computer	\# Qubits for advantage (est)	Years to advantage (est)
Quantum Chemistry	NISQ/Approximate QC	$10^{2} \sim 10^{3}$	<5 ?
Optimization (specific)	NISQ/Approximate QC	$10^{2} \sim 10^{3}$	<5 ?
Heuristic machine learning	NISQ/Approximate QC	$10^{2} \sim 10^{3}$	<5 ?
Shor's algorithm	Universal fault- tolerant QC	$>10^{8}$	$>10 \sim 15$ if
Big Linear Algebra	Universal fault- tolerant QC	$>10^{8}$	$>10 \sim 15$ if prossible

"Quantum Computing: Progress and Prospects"

Key Finding 1: Given the current state of quantum computing and recent rates of progress, it is highly unexpected that a quantum computer that can compromise RSA 2048 or comparable discrete logarithm- based public key cryptosystems will be built within the next decade.

"Quantum Computing: Progress and Prospects"

Key Finding 10: Even if a quantum computer that can decrypt current cryptographic ciphers is more than a decade off, the hazard of such a machine is high enough - and the time frame for transitioning to a new security protocol is sufficiently long and uncertain - that prioritization of the development, standardization, and deployment of post-quantum cryptography is critical for minimizing the chance of a potential security and privacy disaster.

Conclusions

- Quantum computers are not an immediate threat, they are rather a big opportunity for other areas, such as e.g. chemistry, optimisation tasks, and financial mathematics, now
- However, they are mid / long-term threat, so be careful about retroactive cryptanalysis
- Follow upcoming recommendation of cryptologists
- Be careful when implementing symmetric encryption on quantum hardware
- When appropriate, migrate to a quantum resistant public key cryptosystem

Physics is like sex: sure, it may give some practical results, but that's not why we do it.

Richard Phillips Feynman
(1918-1988, Nobel Prize in Physics 1965)

