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Postulate #1: Qubit state belongs to Hilbert space of dimension 2
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Postulate #2: Qubit evolution is given by a unitary transformation
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Postulate #3: Projective probabilistic measurement 

• When measured, quantum state collapses into one of particular eigenstates 
comprising the basis vectors of the corresponding Hilbert space. 

• For a qubit, these are labeled |0> and |1>. So called computational basis. 

• Superposition cannot be seen directly. It governs the probability of the 
measurement outcome; coefficients ⍵i called probability amplitudes.

P[result = i ]= ω i

2
=ω i ⋅ω i

∗



Postulate #4: Qubit register state belongs to H2 ⨂ H2 ⨂ … ⨂ H2

• Exponencial growth of dimension: n-qubit register belongs to Hilbert space of 
dimension 2n and can be in a superposition of all of its 2n eigenstates. 

- together with linear operators acting on this register, this is the source of so-
called quantum parallelism 

- however, the superposition still cannot be seen directly, it still just governs the 
probability of the measurement outcome 

- eigenstates (computational basis) |00…0>, |00…1>, …, |11…1> 

- sometimes, the tensor product is noted explicitly |00…0> = |0>|0>…|0>, etc.



Separable Register State Example (Note the Pure Tensor Product…)

⨂ ⨂

ψ = 1
8
000 + 001 + 010 + 011 + 100 + 101 + 110 + 111( )



Entanglement (Note the Unavoidable Sum of Tensor Products…)
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Computational Aspects

• Actually, we have already reformulated the quantum mechanics postulates 
slightly to tailor them to qubits and qubit registers. 

• We can continue further to derive computational paradigms. For instance: 

- quantum parallelism (already noted above) 

- interference (constructive / destructive, enabled by the complex amplitudes) 

- entangled states (seen as an extra power for algorithms)



Computational Interference
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This was just a computational version of Mach-Zehnder experiment



Time to Say: “Hello World!”



Deutsch-Jozsa: Quantum Computation “Hello World”

• Let us have f: {0, 1}N → {0, 1} that is promised to be either constant or 
balanced (nothing else). Balanced means the function vector has exactly 2N-1 
ones (and zeros). 

- we have to decide what kind of function we have 

- to give a deterministic answer classically, we need at least 2N-1 + 1 
invocations of f 

- on a quantum computer, it suffices to do just one invocation of f 

- exponential speed up thanks to the quantum parallelism and interference



Simple Case for N = 1

x, f(x) Constant function Balanced function

0 0 1 0 1

1 0 1 1 0



DJ Quantum Computation Scheme (with balanced f example)

oracle function operator Uf









RSA (since 1977)

x = yemodN
easy way

hard way

x, y < N



RSA - Going Back and Forth

xdmodN = y
x, y < N

hard easy way



How to get the private exponent “d”?

N = pq
d = e−1mod lcm(p −1,q −1)

easy way if we can factorise N



Period Finding and Factorisation (Shor’s Algorithm)

Let f (k) = ak mod N
and let us find r: f (k + r) = f (k)

⇒ ar mod N = 1,so N  divides ar −1
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Quantum Parallelism…
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Quantum Parallelism… (Example)
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M = 16,N = 15,a = 7

ψ = 1
4
0 1 + 1 7 + 2 4 + 3 13 + 4 1 + 5 7 + ...+ 15 13( )



Feeling of the Period

ψ = 1
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Quantum Fourier Transform (QFT) of Eigenstate
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Superposing QFT
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Exploiting the Parallelism via QFT Interference



It is not only about the Shor’s algorithm

• Grover’s search method 

- quadratic speed-up, usable for both asymmetric and symmetric algorithms 

• Simon’s period finding 

- exponencial speed-up, usable for both asymmetric and symmetric algorithms 

• Hidden subgroup problem 

- exponencial speed-up 

- generalises Simon’s, Shor’s, and a lot of other algorithms
— http://quantumalgorithmzoo.org





Main Challenges for Quantum Computers Today

• We have a Noisy 
Intermediate-Scale 
Quantum (NISQ) technology 

- coherence time 

- scalability

[Electronic Numerical Integrator and Computer - ENIAC]



[Sutor, 2018]



[Sutor, 2018]



“Quantum Computing: Progress and Prospects”

Key Finding 1: Given the current state of quantum computing and recent 
rates of progress, it is highly unexpected that a quantum computer that can 
compromise RSA 2048 or comparable discrete logarithm- based public key 
cryptosystems will be built within the next decade. 

— http://nap.edu/25196 



“Quantum Computing: Progress and Prospects”

Key Finding 10: Even if a quantum computer that can decrypt current 
cryptographic ciphers is more than a decade off, the hazard of such a machine 
is high enough—and the time frame for transitioning to a new security protocol 
is sufficiently long and uncertain—that prioritization of the development, 
standardization, and deployment of post-quantum cryptography is critical 
for minimizing the chance of a potential security and privacy disaster.  

— http://nap.edu/25196 



Conclusions

• Quantum computers are not an immediate threat, they are rather a big 
opportunity for other areas, such as e.g. chemistry, optimisation tasks, and 
financial mathematics, now 

• However, they are mid / long-term threat, so be careful about retroactive 
cryptanalysis 

• Follow upcoming recommendation of cryptologists 

• Be careful when implementing symmetric encryption on quantum hardware 

• When appropriate, migrate to a quantum resistant public key cryptosystem



Physics is like sex: sure, it may 
give some practical results, 
but that's not why we do it.

Richard Phillips Feynman 
(1918 - 1988, Nobel Prize in Physics 1965)


