RADIO ASPECTS OF NFC SECURITY

Tomáš Rosa http://crypto.hyperlink.cz

ANTENNA ESSENTIALS WITH NEAR AND FAR FIELDS DISCUSSION

START WITH SOMETHING FAMILIAR

[Buddipole QRV by 5B8AP]

THE IDEAL ELECTRIC DIPOLE

- Electrically small, i.e. $\Delta z << \lambda$, uniform amplitude current element.
 - Ordinary dipole is covered by integration over these elements.
- In the far field, a donut-like pattern bearing the vertical polarisation is produced.
- In general, its field has the following components.

$$\overrightarrow{E}_{edp}(I^{(e)}) = E_{edp,\theta}(I^{(e)}) \cdot \widehat{e_{\theta}} + E_{edp,r}(I^{(e)}) \cdot \widehat{e_{r}}$$

$$\overrightarrow{H}_{edp}(I^{(e)}) = H_{edp,\phi}(I^{(e)}) \cdot \widehat{e_{\phi}}$$

(illustration purpose only)

HAVE YOU SAID DONUT?

TOWARDS SOMETHING APPEALING

[AlexLoop by Alex, PY1AHD]

THE SMALL LOOP

- Electrically small, i.e. $2\pi a < \lambda/10$, uniform amplitude current loop.
- Can be modelled as an ideal *magnetic* dipole which is the theoretical dual of the ideal electric dipole.
- The duality equations follow.

$$\vec{E}_{mdp}(I^{(m)}) \equiv -\vec{H}_{edp}(I^{(m)}), \vec{H}_{mdp}(I^{(m)}) \equiv \vec{E}_{edp}(I^{(m)})$$

$$\mu_{mdp} \equiv \varepsilon_{edp}, \varepsilon_{mdp} \equiv \mu_{edp}$$

$$\beta_{mdp} = \omega \sqrt{\mu_{mpd}} \varepsilon_{mdp} = \omega \sqrt{\varepsilon_{edp}} \mu_{edp} = \beta_{edp}$$
note also $\beta = \frac{2\pi}{\lambda}, v = \lambda f$

(illustration purpose only)

DONUT PATTERN AGAIN

- The duality with the ideal electric dipole tells us the *far field* has the donut-like form.
- The polarisation is reversed
 (!) i.e. horizontal in place of vertical, now.
- In the *near field*, however, there is a significant radial component (cf. below).

(rough illustration purpose only)

LONG STORY SHORT

$$\vec{E}_{mdp}(I^{(m)}) = -\frac{I^{(m)}\Delta z}{4\pi} j\beta (\frac{1}{r} + \frac{1}{j\beta r^2})e^{-j\beta r}\sin\theta \cdot \hat{e}_{\phi}$$

$$\vec{H}_{mpd}(I^{(m)}) = \frac{I^{(m)}\Delta z}{4\pi} j\omega \varepsilon (\frac{1}{r} + \frac{1}{j\beta r^2} - \frac{1}{\beta^2 r^3}) e^{-j\beta r} \sin\theta \cdot \hat{e}_{\theta}$$
$$+ \frac{I^{(m)}\Delta z}{2\pi} j\omega \varepsilon (\frac{1}{j\beta r^2} - \frac{1}{\beta^2 r^3}) e^{-j\beta r} \cos\theta \cdot \hat{e}_{r}$$

MAGNETIC CURRENT OF THE SMALL LOOP

$$I^{(m)}\Delta z = j\omega \mu IS$$
$$S = \pi a^2$$

(based on far field equivalence)

NEAR, FAR

- Basing on the dominating *E*, *H* field terms, it is useful to distinguish:
 - Reactive near field (XNF), where the terms with $1/r^2$ and $1/r^3$ dominate. Energy is mainly stored and exchanged between E and H.
 - Radiating near field (Fresnel region), where the $1/r^2$ terms start to dominate, i.e. $r > \lambda/2\pi$. Energy is mainly radiated with unstable patterns, however.
 - Far field (Fraunhofer region), where the 1/r terms remain to dominate and the plane wave model can be used. Several conditions shall be met: $r > 2D^2/\lambda$, r > 5D, $r > 1.6\lambda$, where D is the largest antenna dimension. Energy is radiated with a distance-independent field pattern.

WHEREVER YOU ARE

ANTENNA IMPEDANCE

$$Z_A = R_r + R_o + jX_A$$

- The input impedance Z_A describes the antenna from the lumped circuit parameters viewpoint.
 - $R_{\rm r}$ is the equivalent radiation resistance representing the energy emanated through the radio waves
 - R_0 describes the dissipative energy loss
 - X_A reflects the energy exchanged back-and-forth with the reactive near field

RADIATION OF THE SMALL LOOP

$$P = 10I^{2}(\beta^{2}S)^{2}$$

$$R_{r} = \frac{2P}{I^{2}} = 20(\beta^{2}S)^{2} \approx 31171(\frac{S}{\lambda^{2}})^{2}$$

$$\approx 31171(\frac{NS}{\lambda^{2}})^{2}, \text{ for a small } N\text{-turn loop}$$

DAMPING RESISTOR

- For the radiation efficiency analysis, R_0 shall also cover any damping resistor R_q used.
- Especially for NFC, a nonzero R_q is often inserted serially to lower the antenna Q to achieve the required bandwidth.
 - Finally, we can expect a very small radiation efficiency for a typical NFC antenna.
 - Interestingly, we may investigate on how to design a yet-usable NFC antenna that is, however, a very poor radiator anyway.
 - Nevertheless, it does not mean the radiation is zero.

EFFICIENCY ANALYSIS

- To get a better overview, we can compute the radiation efficiency $e_{\rm r}$ that can be further used for e.g. gain estimation, etc.
- We do that by comparing the equivalent real resistances from the circuit model of Z_A .

$$R_s = \sqrt{\frac{\omega\mu}{2\sigma}}$$

$$R_o = \frac{a}{c}R_s$$
, a ~ loop radius, c ~ wire radius

$$e_r = \frac{R_r}{R_q + R_o + R_r}$$

PARASITIC ANTENNAS

- From the security viewpoint, we shall recognise it may not be the *primary* antenna only that can radiate sensitive data.
- In general, any spatial distribution of a time-varying current modulated (or sensed!) by the internal processing unit is a potential backdoor.
 - We are getting to the well-known phenomenon of the electromagnetic sidechannels.
 - Here, we have an extremely high chance this mechanism is exploitable by attackers.
 - In principle, applying anti-RFI techniques for all those patch cables and power lines is a good idea to start with.

NEAR FIELD COMMUNICATION

PASSIVE NFC COUPLING

[Finkenzeller, K., 2011]

INITIATOR SPEAKING NFC-A

INITIATOR SPEAKING NFC-A

INITIATOR SPEAKING NFC-B

INITIATOR SPEAKING NFC-B

Lenz's Law Illustrated

NFC Initiator

Lenz's Law Illustrated

Short Circuit Switch

OFF

NFC Initiator

Lenz's Law Illustrated

Short Circuit Switch

NFC Initiator

OFF

TARGET RESPONSE NFC-A

TARGET RESPONSE NFC-A

IFULIKE IT HOT (THE WHOLE QUIZ)

IFULIKEIT HOT (THE WHOLE QUIZ)

NFC OVERVIEW

Activity	Technology / Device Platform						
Listen, RF Collision Avoidance, Technology Detection, Collision Resolution	NFC-A Section 4				NFC-B Section 5	NFC-F Section 6	
Device Activation		Type 1 Tag Platform Section 8	Type 2 Tag Platform Section 9	Type 4A Tag Platform Section 11	Type 4B Tag Platform Section 12	Type 3 Tag Platform Section 10	
Data Exchange Device Deactivation	NFC-DEP Protocol Section 14	Type 1, 2, and 3 Tag Half-duplex Protocol Section 7		ISO-DEP Protocol Section 13		Type 1, 2, and 3 Tag Half-duplex Protocols Section 7	NFC-DEP Protocol Section 14

NFC RADIO ATTACKS

(With the focus on the passive NFC mode.)

INITIATOR RANGE EXTENSION

- Allows RF skimming or wormhole (relay) attacks.
- Due to very low e_r and very high power consumption, it is practically limited to the reactive near field region (XNF).
- Antenna diversity separating downlink and uplink channels may help significantly.
- Distance: Decimetres (confirmed), reliably working at around 20 cm. Principal upper limit $\approx \lambda/2\pi$, i.e. circa 3.5 m, is infeasible to achieve practically. So, we are limited to a kind of *bumping* attack.

TARGET RANGE EXTENSION

- Allows covert communication with NFC terminal.
- Combines the techniques for a long range sniffing with the reciprocal problem of an extended-range signal injection into the RF front-end of the terminal.
- Based on direct DSB (Double Side Band) or even SSB (Single Side Band) injection, basing on the particular terminal signal processing.
- Principally possible even from the Fraunhofer region.
- The terminal antenna gain together with its input sensitivity limits the distance.
- Distance: Metres (confirmed). Working from the Fraunhofer region is practically very hard.

SNIFFING

- Sensitive data capture, identity theft.
- Works over all zones, from XNF to Fraunhofer region.
- Often, this scenario induces the most serious risks.
- For regions outside XNF, the important idea is to look for higher harmonics of the 13.56 MHz carrier.
- Furthermore, antenna design and orientation varies through the regions.
- Distance: Metres to dekametres. Confirmed for both downlink and uplink channels.

ALL YOU NEED IS LOOP

SPYING IN THE LANE (STILL IN XNF)

[https://www.youtube.com/watch?v=9QjxwejBPHs]

TRAFFIC INJECTION

- Allows Man-In-The-Middle scenarios.
- Due to the linear superposition in the EM field, the attacker does not have to be geometrically right in the middle, neither to break the original channel spatially.
- Again, a few turns of a wire around the original reader can be enough.
- Note we can also spoof the Initiator packets, besides the Target responses.
- Covering the path to the Target (downlink) requires XNF. One sided injection can work from the Fresnel or Fraunhofer regions as well.
- Distance: Decimetres (downlink TX covered) up to metres (TX for uplink only). Confirmed indirectly by other experiments together with own observations (cf. below).

LENZ'S LAW BASED "PASSIVE" DOWNLINK TX FOR NFC-B

LENZ'S LAW BASED "PASSIVE" DOWNLINK TX FOR NFC-B

LET'S FACE IT

Original NFC-B Initiator

Lenz-style Fake TX

INITIATOR LOCATION

- Allows searching for active terminals for instance, exposing passengers inspection, etc.
- Carrier detection at 13.56 MHz or higher harmonics, possibly also with the communication footprint.
- Distance: Dekametres. Indirectly confirmed by the eavesdropping experiments that can serve as a lower bound.

TARGET LOCATION

- Allows searching for potentially valuable assets.
- Searching based on radio characteristics without querying the higher protocol layers.
- Electronic Article Surveillance (EAS) style to search for the particular resonant circuits.
- Distance: Decimetres (confirmed by the range extension experiments) to metres (estimated).

JAMMING

- Allows DoS attacks at airport, office entry, market centre etc.
- We can use reciprocity theorems to estimate the effect an attacker's (measurement) antenna would have on the terminal input.
- Distance: Metres (confirmed by the range extension experiments) to dekametres (estimated).

DEVICE DESTRUCTION

- Allows selective DoS on the terminal or transponder.
- In principle, it requires a strong power pulse, so a near field approach is assumed.
- Distance: Decimetres.

CONCLUSIONS

- After all, **there is only one electromagnetic field out there**. NFC devices do not live in a separate universe. It is just a *different approach to the same theory*.
- Besides the wanted near field effects, there is always a plenty of other, possibly unwanted characteristics that can be exploited.
- We shall analyse the whole picture when designing NFC components to eliminate those undesired RF effects as much as possible.
 - Communication protocol engineers shall be fully aware of the residual threats then.
- We shall look for the remaining EM footprint carefully during security analysis and-or penetration tests.

POST SCRIPTUM

REFERENCES (BESIDES THE BOOKS NOTED ABOVE)

- 1. Brown, T.-C.-W. and Diakos, T.: On the Design of NFC Antennas for Contactless Payment Applications, 2011
- 2. Brown, T.-C.-W., Diakos, T., and Briffa, J.-A.: Evaluating the Eavesdropping Range of Varying Magnetic Field Strengths in NFC Standards, 2013
- 3. Diakos, T.-P., Briffa, J.-A., Brown, T.-W.-C., and Wesemeyer, S.: *Eavesdropping near-field contactless payments: a quantitative analysis*, 2013
- 4. Engelhardt, M., Pfeiffer, F., Finkenzeller, K., and Biebl, E.: *Extending ISO/IEC 14443 Type A Eavesdropping Range using Higher Harmonics*, 2013
- 5. Finkenzeller, K.: Research Homepage, http://rfid-handbook.de
- 6. Finkenzeller, K.: *Known attacks on RFID systems, possible countermeasures and upcoming standardisation activities*, 2009
- 7. Finkenzeller, K.: Battery powered tags for ISO/IEC 14443, actively emulating load modulation, 2011
- 8. Finkenzeller, K., Pfeiffer, F., and Biebl, E.: Range Extension of an ISO/IEC 14443 type A RFID System with Actively Emulating Load Modulation, 2011
- 9. Francis, L., Hancke, G.-P., Mayes, K., and Markantonakis, K.: *Practical Relay Attack on Contactless Transactions by Using NFC Mobile Phones*, 2011
- 10. Hancke, G.-P.: Research Homepage, http://www.rfidblog.org.uk/research.html
- 11. Hancke, G.-P.: Practical Eavesdropping and Skimming Attacks on High-Frequency RFID Tokens, 2011

REFERENCES (BESIDES THE BOOKS NOTED ABOVE)

- 12. Kfir, Z. and Wool, A.: Picking Virtual Pockets using Relay Attacks on Contactless Smartcard Systems, 2005
- 13. Kirschenbaum, I. and Wool, A.: How to Build a Low-Cost, Extended-Range RFID Skimmer, 2006
- 14. Lee, Y.: Antenna Circuit Design for RFID Applications, Application Note 710, Microchip Tech. Inc., 2003
- 15. NXP: AN1445 Antenna design guide for MFRC52x, PN51x, and PN3x, 2010
- 16. Oren, Y., Schirman, D., and Wool, A.: Range Extension Attacks on Contactless Smart Cards, 2013
- 17. Pfeiffer, F., Finkenzeller, K., and Biebl, E.: Theoretical Limits of ISO/IEC 14443 type A Eavesdropping Attacks, 2012
- 18. Rosa, T.: RFID Wormholes the Case of Contactless Smart Cards, 2011
- 19. Thevenon, P.-H., Savry, O., Tedjini, S., and Malherbi-Martins, R.: Attacks on the HF Physical Layer of Contactless and RFID Systems, 2011
- 20. ISO/IEC 14443-1: *Identification cards Contactless integrated circuit(s) cards Proximity cards Part 1: Physical characteristics*, 2000
- 21. ISO/IEC 14443-2: *Identification cards Contactless integrated circuit(s) cards Proximity cards Part 2: Radio frequency power and signal interface*, 2001
- 22. ISO/IEC 14443-3: Identification cards Contactless integrated circuit(s) cards Proximity cards Part 3: Initialization and anticollision, 2001
- 23. ISO/IEC 14443-4: *Identification cards Contactless integrated circuit(s) cards Proximity cards Part 4: Transmission protocol*, 2001
- 24. ISO/IEC 18092: Information technology Telecommunications and information exchange between systems Near Field Communication Interface and Protocol (NFCIP-1), 2004

REFERENCES (BESIDES THE BOOKS NOTED ABOVE)

- 25. NFC Forum: NFC Digital Protocol, Technical Specification, 2010
- 26. EMV Contactless Specifications for Payment Systems: *Book D EMV Contactless Communication Protocol Specification*, 2015