BLUETOOTH LOW ENERGY RANGING PRIMER

Tomáš Rosa <u>http://crypto.hyperlink.cz</u>

ANTENNA ESSENTIALS WITH NEAR AND FAR FIELDS DISCUSSION

START WITH SOMETHING FAMILIAR

[Buddipole QRV by 5B8AP]

THE IDEAL ELECTRIC DIPOLE

- Electrically small, i.e. $\Delta z \ll \lambda$, uniform amplitude current element.
 - Ordinary dipole is covered by integration over these elements.
- In the far field, a donut-like pattern bearing the vertical polarisation is produced.
- In general, its field has the following components.

$$\vec{E}_{edp}(I^{(e)}) = E_{edp,\theta}(I^{(e)}) \cdot \hat{e}_{\theta} + E_{edp,r}(I^{(e)}) \cdot \hat{e}_{r}$$
$$\vec{H}_{edp}(I^{(e)}) = H_{edp,\phi}(I^{(e)}) \cdot \hat{e}_{\phi}$$

(illustration purpose only)

LONG STORY SHORT

$$\vec{H}_{edp}(I^{(e)}) = \frac{I^{(e)}\Delta z}{4\pi} j\beta(\frac{1}{r} + \frac{1}{j\beta r^2})e^{-j\beta r}\sin\theta \cdot \hat{e}_{\phi}$$

$$\vec{E}_{epd}(I^{(e)}) = \frac{I^{(e)}\Delta z}{4\pi} j\omega\mu(\frac{1}{r} + \frac{1}{j\beta r^2} - \frac{1}{\beta^2 r^3})e^{-j\beta r}\sin\theta \cdot \hat{e}_{\theta}$$
$$+ \frac{I^{(e)}\Delta z}{2\pi} j\omega\mu(\frac{1}{j\beta r^2} - \frac{1}{\beta^2 r^3})e^{-j\beta r}\cos\theta \cdot \hat{e}_{r}$$
$$= \frac{I^{(e)}\Delta z}{4\pi} j\omega\mu(\frac{1}{r} + \frac{1}{j\beta r^2} - \frac{1}{\beta^2 r^3})e^{-j\beta r}\sin\theta \cdot \hat{e}_{\theta}$$
$$+ \frac{I^{(e)}\Delta z}{2\pi}\eta(\frac{1}{r^2} - j\frac{1}{\beta r^3})e^{-j\beta r}\cos\theta \cdot \hat{e}_{r}$$

NEAR, FAR

- Basing on the dominating *E*, *H* field terms, it is useful to distinguish:
 - *Reactive near field* (XNF), where the terms with $1/r^2$ and $1/r^3$ dominate. Energy is mainly stored and exchanged between *E* and *H*.
 - *Radiating near field* (Fresnel region), where the $1/r^2$ terms start to dominate, i.e. $r > \lambda/2\pi$. Energy is mainly radiated with unstable patterns, however.
 - *Far field* (Fraunhofer region), where the 1/*r* terms remain to dominate and the plane wave model can be used. Several conditions shall be met: *r* > 2*D*²/λ, *r* > 5*D*, *r* > 1.6λ, where *D* is the largest antenna dimension. Energy is radiated with a distance-independent field pattern.

WHEREVER YOU ARE

ANTENNA IMPEDANCE

- The input impedance Z_A describes the antenna from the lumped circuit parameters viewpoint.
 - *R*_r is the equivalent radiation resistance representing the energy emanated through the radio waves
 - $R_{\rm o}$ describes the dissipative energy loss
 - X_A reflects the energy exchanged back-and-forth with the reactive near field

EFFICIENCY ANALYSIS

- To get a better overview, we can compute the radiation efficiency $e_{\rm r}$ that can be further used for gain estimation, etc.
- Especially, please see the relationship in between the gain *G* and directivity *D* below.

$$e_r = \frac{R_r}{R_o + R_r}$$
$$G = e_r D$$

UNDERSTANDING DIRECTIVITY AND GAIN

[Vivaldi Antenna Design Analysis by Caty Fairclough]

FREE SPACE PROPAGATION BASICS

TOWARDS FRIIS TRANSMISSION FORMULA

- Let P_t be the transmitter power delivered to an isotropic antenna,
 - $e_{\rm rt}$ the transmitter antenna radiation efficiency,
 - ▶ and *d* the target radial distance.
- The far-field power density p_{iso} at the distant place is then:

 $p_{iso} = \frac{e_{rt}P_t}{4\pi d^2}$

INCLUDING ANTENNA DIRECTIVITY

- Furthermore, let D_t be the transmitter directivity
 - ▶ and G_t its gain (we are in the far-field region!).
- The power density *p* at the distant place in the direction of the maximum directivity/gain is then:

AVAILABLE RECEIVER ANTENNA POWER

- Let A_r be the receiver antenna effective aperture,
 - $G_{\rm r}$ its gain,
 - ▶ and λ the wavelength (*c*/*f*, in the free space).
- The available receiver antenna terminal power in the maximum directivity course is then given by:

$$P_{r} = \frac{A_{r}G_{t}P_{t}}{4\pi d^{2}} = G_{r}G_{t}P_{t}\left(\frac{\lambda}{4\pi d}\right)^{2},$$

where $A_{r} = \frac{\lambda^{2}G_{r}}{4\pi}$

AVAILABLE RECEIVER ANTENNA POWER

- Let A_r be the receiver antenna effective aperture,
 - $G_{\rm r}$ its gain,
 - ▶ and λ the wavelength (*c*/*f*, in the free space).
- The available receiver antenna terminal power in the maximum directivity course is then given by:

$$P_{r} = \frac{A_{r}G_{t}P_{t}}{4\pi d^{2}} = G_{r}G_{t}P_{t}\left(\frac{\lambda}{4\pi d}\right)^{2},$$

where $A_{r} = \frac{\lambda^{2}G_{r}}{4\pi}$ free space attenuation

SPEAKING IN DECIBELS

- Let dBm denote decibels over 1 mW power and let dBi denote decibels of the antenna power gain over the isotropic source.
 - ▷ $[P]_{dBm} = 10\log(P/10^{-3}) = 10\log P + 30$
 - ▷ $[G]_{dBi} = 10\log (G/1) = 10\log G$
- The available receiver antenna terminal power is then:

 $[P_r]_{dBm} = [P_t]_{dBm} + [G_t]_{dBi} + [G_r]_{dBi} - 20\log\frac{4\pi d}{\lambda}$

SPEAKING IN DECIBELS

- Let dBm denote decibels over 1 mW power and let dBi denote decibels of the antenna power gain over the isotropic source.
 - ▷ $[P]_{dBm} = 10\log(P/10^{-3}) = 10\log P + 30$
 - ▷ $[G]_{dBi} = 10\log (G/1) = 10\log G$
- The available receiver antenna terminal power is then:

$$[P_r]_{dBm} = [P_t]_{dBm} + [G_t]_{dBi} + [G_r]_{dBi} - 20\log\frac{4\pi d}{\lambda}$$

free space loss

RECURRENT EQUATION

With respect to a calibration distance d₀ (usually 1 metre), we can derive:

$$-\left[P_{r}(d_{0})\right]_{dBm} = -\left[P_{t}\right]_{dBm} - \left[G_{t}\right]_{dBi} - \left[G_{r}\right]_{dBi} + 20\log\frac{4\pi}{\lambda} + 20\log d_{0}$$
$$\left[P_{r}(d)\right]_{dBm} = \left[P_{t}\right]_{dBm} + \left[G_{t}\right]_{dBi} + \left[G_{r}\right]_{dBi} - 20\log\frac{4\pi}{\lambda} - 20\log d$$

$$[P_{r}(d)]_{dBm} - [P_{r}(d_{0})]_{dBm} = -20(\log d - \log d_{0})$$
$$[P_{r}(d)]_{dBm} = [P_{r}(d_{0})]_{dBm} - 20\log \frac{d}{d_{0}}$$

RECURRENT EQUATION

With respect to a calibration distance d₀ (usually 1 metre), we can derive:

$$-\left[P_{r}(d_{0})\right]_{dBm} = -\left[P_{t}\right]_{dBm} - \left[G_{t}\right]_{dBi} - \left[G_{r}\right]_{dBi} + 20\log\frac{4\pi}{\lambda} + 20\log d_{0}$$
$$\left[P_{r}(d)\right]_{dBm} = \left[P_{t}\right]_{dBm} + \left[G_{t}\right]_{dBi} + \left[G_{r}\right]_{dBi} - 20\log\frac{4\pi}{\lambda} - 20\log d$$

$$\left[P_{r}(d)\right]_{dBm} - \left[P_{r}(d_{0})\right]_{dBm} = -20\left(\log d - \log d_{0}\right)$$
$$\left[P_{r}(d)\right]_{dBm} = \left[P_{r}(d_{0})\right]_{dBm} - 20\log \frac{d}{d_{0}}$$

our primary distance indicator

BLE REAL PLAYGROUND

REAL WORLD OBSTACLES

- Multipath propagation fading
- Polarisation mismatch
- Field equations in a matter instead of the free space
- Radio channel interference in the 2.4 GHz ISM band
- RSSI measurement (in)accuracy

FADING ILLUSTRATION

Module	Typical TXP	Sensitivity	Direction	Antenna Attenuation	Link Budget	Calculated Range	Tested Range
BLE121LR	8 dBm	-98 dBm	Front	-3 dB	100 dB <mark>O</mark>	470m 🔵	450m
BLE121LR	8 dBm	-98 dBm	Back	-7 dB	92 dB 🔴	300m 🔴	300m
BLE121LR	8 dBm	-98 dBm	Side	-5 dB	96 dB 🔵	370m 🔵	340m

[BLE112, BLE113, and BLE121LR Range Analysis by Bluegiga Tech.]

GROUND PLANE EFFECTS

[BLE112, BLE113, and BLE121LR Range Analysis by Bluegiga Tech.]

GENERAL APPROACH

- Follow the idea of distance measurement principle suggested by the Friis transmission formula.
- Use a decent model parametrisation (development phase) and calibration (production phase) to cope with the predictable discrepancies.
- Deploy a simple statistical signal processing to filter out random disturbances.

POSITIONING VS. RANGING

- The indoor RF positioning and navigation applications can serve as an inspiration.
- We shall be careful, however, that the problem of BLE ranging in an ordinary environment is not the same as the positioning in a particular, wellmeasured environment.

RSSI MODEL

- Let RSSI denote the value provided by the Read RSSI Command via BLE HCI.
- Basing on the formula derived above, we can write:

$$RSSI(d) = RSSI(d_0) - 10n \log \frac{d}{d_0} + X$$

- ▶ d_{o} denotes the calibration distance,
- *n* is a model parametrisation constant (*n* = 2 in the free space), referred to as the *attenuation factor*
- X is a random variable covering fluctuations

1 METRE CALIBRATION

- Let $d_0 = 1$ m.
- The model can further simplified then as:

$RSSI(d) = A - 10n \log d + X$

A denotes the RSSI calibration at 1 m distance.

RSSI PRECISION

• The original BLE standard description of Read RSSI Command, accessible via HCI, states that:

For an LE transport, a Connection_Handle is used as the Handle command parameter and return parameter. The meaning of the RSSI metric is an absolute receiver signal strength value in dBm to \pm 6 dB accuracy. If the RSSI cannot be read, the RSSI metric shall be set to 127.

Low-cost BLE controllers can be hardly expected to do any better than this...

nRF51822 EXAMPLE

8.6 **RSSI specifications**

Symbol	Description	Note	Min.	Тур.	Max.	Units	Test level
RSSI _{ACC}	RSSI accuracy	Valid between: -50 dBm and -80 dBm			±б	dB	2
RSSIRESOLUTION	RSSI resolution			1		dB	1
RSSI _{PERIOD}	Sample period		8.8			μs	1
RSSI _{CURRENT}	Current consumption in addition to I _{RX}			250		μΑ	1

Table 31 RSSI specifications

[nRF51822 - Product Specification]

RSSI FILTRATION

- RSSI queries can be modelled as a random process sampling.
- Easy-to-implement (supposedly) IIR filter based on AR(*p*) allpole model to smooth out the variation of data obtained was publicly suggested by Zhu et al.
 - In particular, it was advised to use p = 3 together with the following coefficients:

y[n] = 0.2 * y[n-1] + 0.2 * y[n-2] + 0.1 * y[n-3]+ 0.5 * RSSI[n]

[Based on Zhu, Chen, Luo, and Li, 2014]

CONCLUSIONS

- In the free space, the wave propagation problems are relatively easy to solve.
- However, a precise RSSI-to-distance transformation in the UHF band for the everyday environment is a long standing hard problem.
 - BLE in the 2.4 GHz ISM band adds a considerable amount of further practical difficulties.
- Anyway, under a reasonably simple model, we can get at least somewhere beyond the "mystery" of the trial and error approach.
 - For many practical applications, this can be fair enough.

REFERENCES (BESIDES THE BOOKS NOTED ABOVE)

- 1. Aamodt, K.: CC2431 Location Engine, Application Note AN042, SWRA095, Texas Instruments, version 1.0
- 2. Bluegiga Technologies: BLE112, BLE113 and BLE121LR Range Analysis, Application Note, version 1.1, May 15th, 2014
- 3. Bluetooth SIG: Bluetooth Core Specification, version 4.2, 2014
- 4. Bluetooth SIG: Bluetooth Core Specification Supplement (CSS), version 5, 2014
- 5. Chen, Y.-T., Yang, C.-L., Chang, Y.-K., and Chu, C.-P.: *A RSSI-based Algorithm for Indoor Localization Using ZigBee in Wireless Sensor Network*, In Proc of the 15th International Conference on Distributed Multimedia Systems (DMS 2009), pp. 70-75, 2009
- 6. Cinefra, N.: *An adaptive indoor positioning system based on Bluetooth Low Energy RSSI*, Diploma Thesis, Politecnico di Milano, Scuola di Ingegneria Industriale e dell'Informazione, Anno Accademico 2012/2013
- 7. Dong, Q. and Dargie, W.: *Evaluation of the Reliability of RSSI for Indoor Localization*, In Proc. of Wireless Communications in Unusual and Confined Areas (ICWCUCA) 2012, pp. 1-6, 2012
- 8. Halder, S.J., Choi, T.-Y., Park, J.-H., Kang, S.-H., Yun, S.-J., and Park, J.-G.: *On-Line Ranging for Mobile Objects Using ZIGBEE RSSI Measurement*, In Proc. of Pervasive Computing and Applications (ICPCA) 2008, pp. 662-666, October 2008
- 9. Halder, S.-J. and Kim, W.: *A Fusion Approach of RSSI and LQI for Indoor Localization System Using Adaptive Smoothers*, Journal of Computer Networks and Communications Volume 2012, Article ID 790374, August, 2012
- 10. Hata, M.: *Empirical Formulae for Propagation Loss in Land Mobile Radio Service*, IEEE Trans. on Vehicular Technology, Vol. 29, No. 3, pp. 317-325, August 1980
- 11. Ileri, F. and Akar, M.: *RSSI Based Position Estimation in ZigBee Sensor Networks*, In Proc. of Recent Advances in Circuits, Systems, Signal Processing and Communications, pp. 62-73, 2014
- 12. Lau, E.-E.-L., Lee, B.-G., Lee, S.-C., and Chung, W.-Y.: *Enhanced RSSI-Based High Accuracy Real-Time User Location Tracking System For Indoor And Outdoor Environments*, International Journal On Smart Sensing And Intelligent Systems, Vol. 1, No. 2, June 2008
- 13. Nordic Semiconductor: *nRF51822 Product Specification*, version 1.3, 2013
- 14. Seidel, S.-Y. and Rappaport, T.-S.: *914 MHz Path Loss Prediction Models for Indoor Wireless Communications in Multifloored Buildings*, IEEE Trans. on Antenna and Propagation, Vol. 40, No. 2, pp. 207-217, February 1992
- 15. Zhu, J.-Y., Chen, Z., Luo, H.-Y., and Li, Z.: *RSSI Based Bluetooth Low Energy Indoor Positioning*, In Proc. of International Conference on Indoor Positioning and Indoor Navigation, October 2014