Mathematical Epidemiology for ... just in case
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Have you said "modelling”
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SIR Compartmental Epidemic Model
- based on Kermack-McKendrick theory since 1927
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Towards COVID-19 Quantitative Realities - SEIR and SEAIR
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SIR Compartmental Epidemic Model
- Zzooming on the mass action mechanism
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All Those “R’s
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*) In this particular moolel
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tative aspects, e.g.
helr stability

- Effective reproduction number Re(t)

- what we observe in daily experience

- Controlled reproduction number Ro

- what we aim for with our interventions
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The effect of the decreasing effective reproduction number
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Anti-Epidemic Interventions

removal rate tntervention 4

transmission rate tntervention ¥

- moderating contact rate - broad testing

- decreasing infection probability - contact tracing
- vaccination
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Example: Qualitative Study of Two Ideal Consecutive Lockdowns

Locked for days: 41-101, 115-190
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Real-World Lockdown Serious Modelling Example (UK)
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Fig. 4. Projections of epidemic dynamics under different control measures. We compare four alternative scenarios for
non-pharmaceutical interventions from 1 January 2021: (i) mobility returning to levels observed during relatively moderate
restrictions in early October 2020; (ii) mobility as observed during the second lockdown in England in November 2020,
then gradually returning to October 2020 levels from 1 March to 1 April 2021,

e —

Dec

Jan

Feb Mar

A'pr

Stringency of NPIs

May Jun Jul

Hospital beds Rt
occupied (thousands)

Deaths

5000 +
4000 +
3000 -
2000 +
1000 4

200,000 vaccinations per week

Moderate (October 2020)

Dec

Jan

Feb Mar

A'pr

M'ay

Jun

High (November 2020) with schools open

Jul

wit

Hospital beds Rt
occupied (thousands)

Deaths

1.5+
1.01
0.5+

0.0+
150 -

100 -

o
o

5000 +
4000 -
3000 -
2000 -
1000 -

2 million vaccinations per week

s

High with schools closed ==  Very high (March 2020)

h schools open; (iii) as (ii), but with school
e —————E T = - =

Dec Jan Feb Mar Apr May Jun Jul

"90U810S//:d11y Wol) papeojumo

y/2021/03/03/science.abg3055 ]

g.org/content/earl

=

[ https://science.sciencema


https://science.sciencemag.org/content/early/2021/03/03/science.abg3055

Basic Vaccination Equation Revisited for HI T

— I S + Assumptions:

1 1 - vaccine distributed uniforml|
y among
threshold (2 09 E ) =—| 1- yet-susceptible people

w E <, ) |
\ - ] - vaccine efficacy € - for spreading

- Immunity does not vanish in near time
(circa one year, at least)

s s e =

2.1 3.5 4.5 5.0 6.45 - Recovered people fraction bearing natural
immunity then sums up with the
vaccinated fraction

89 %

- not shown here for clarity

- e careful with overlaps




Direction field of the model™ equations brings yet-another viewpoint

.......................

.......................

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

NERERERARNEY
RRRRATIARINIAY

.......................

.......................

S LI A T

AN ALIAASSAAA, A S S ]
\\W\‘\\w\\\\\\\\\\\\ /

¥ ¥ ry

f'!/;'
B e e rf'!"!'

Long-term equilibrivum

| H |
PRI

Long-term equilibrivum
disease—free

I
// o

enoemie

short-term sumpLe
epiolem'w outbreak



Countermeasures Safety Check by Simulated Test Runs

| corresponds to estimations based \
the countermensures on an itnoependent |
to be appL'Leal model ‘

EMC untt under test

*) Note the SEIR model szust an example



Conclusion

+ The model description, the ODE system in particular here, can be viewed as an epidemic code

epidemic code — the pandemic — the government — the economics — the companies

- Observing this chain, doesn’t it make sense to incorporate this strong determinism
into our analyses?!

- On

the other hand, the more important decisions are to be made, the more we shall talk about the

SEeCU

- S

rity and safety of our models

mply put trust, but test

- mathematical modelling creates a platform where many experts from different areas can share
and dispute their ideas
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