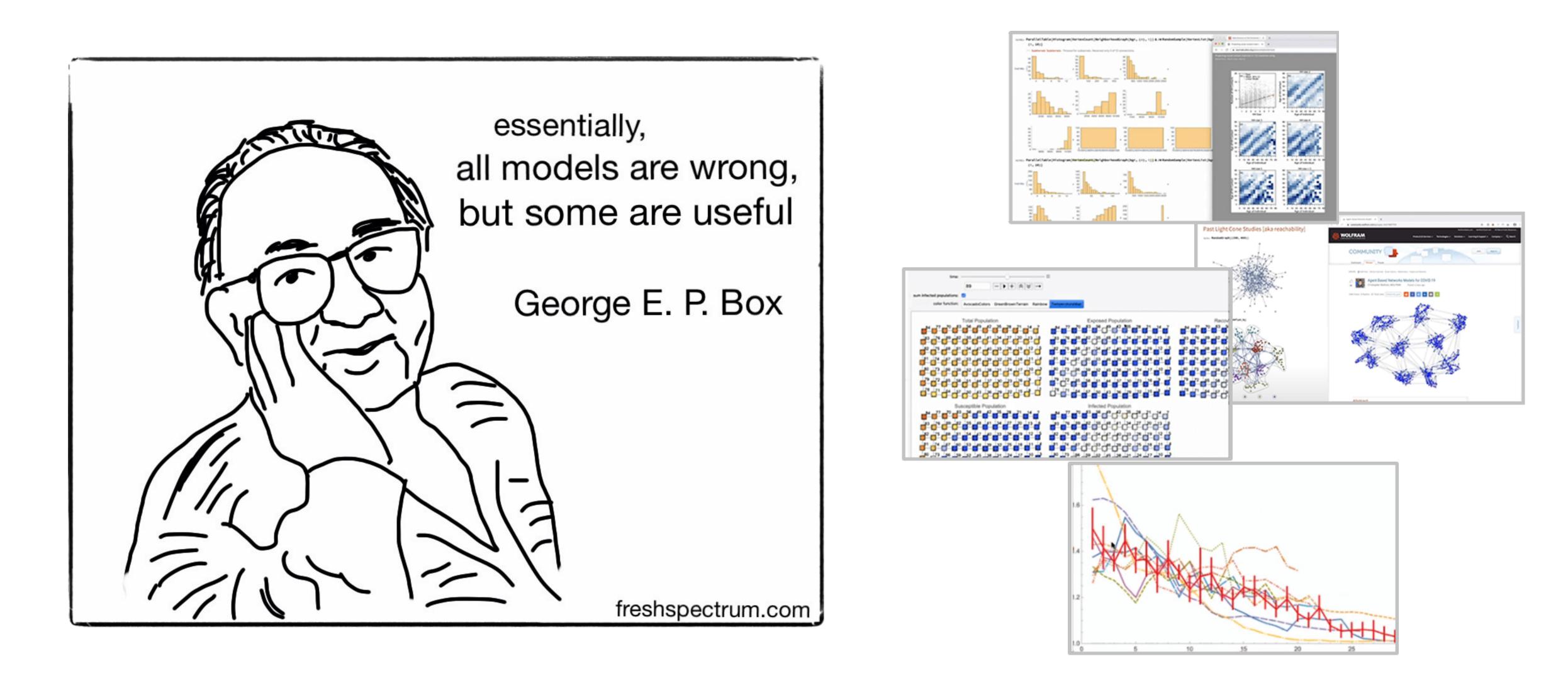
Mathematical Epidemiology for ... Security Analysts Again

Tomáš Rosa

chief mathematician and security analyst Cryptology and Biometrics Competence Centre of Raiffeisen BANK International in Prague

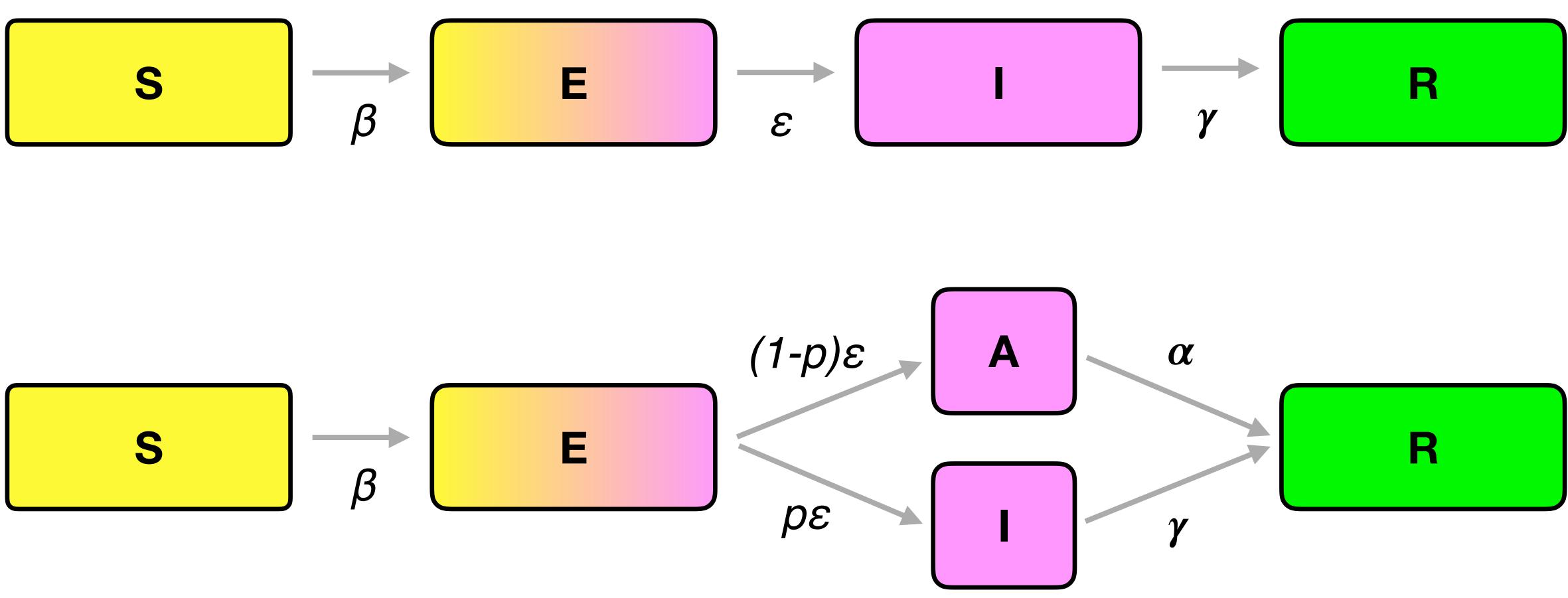
Have you said "modelling"?

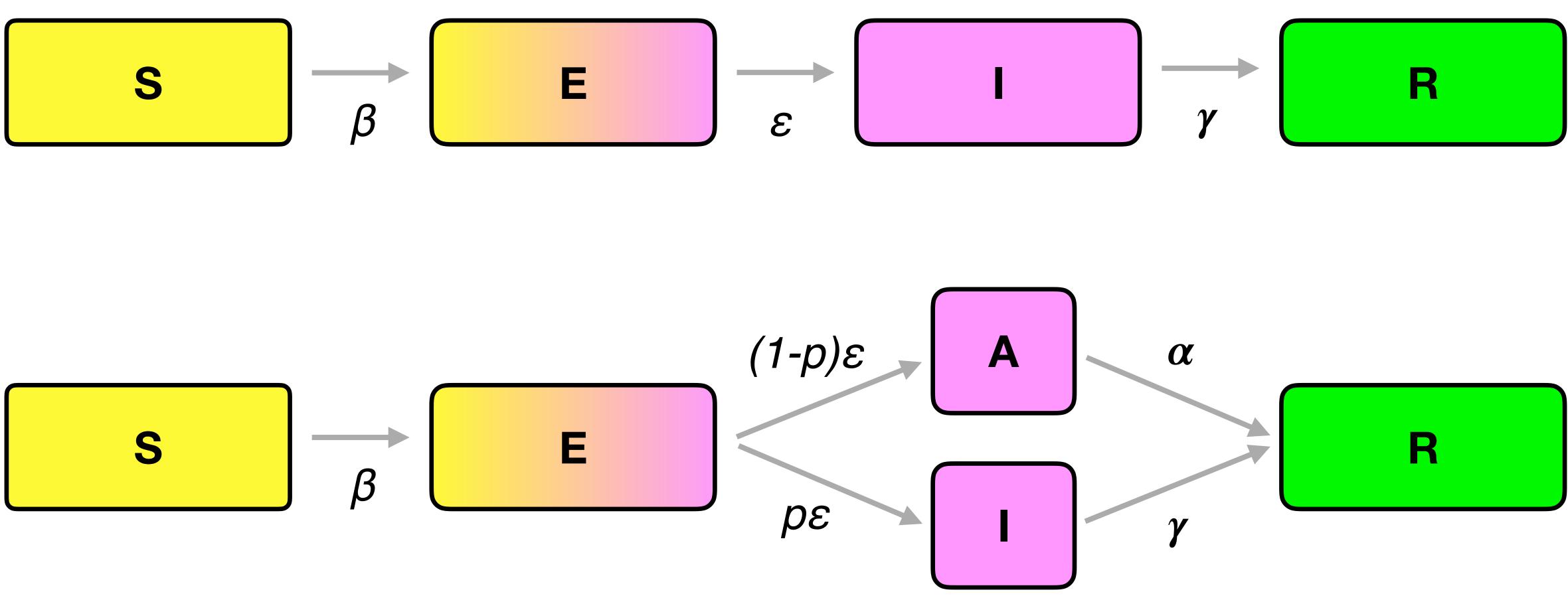


SIR Compartmental Epidemic Model - based on Kermack-McKendrick theory since 1927

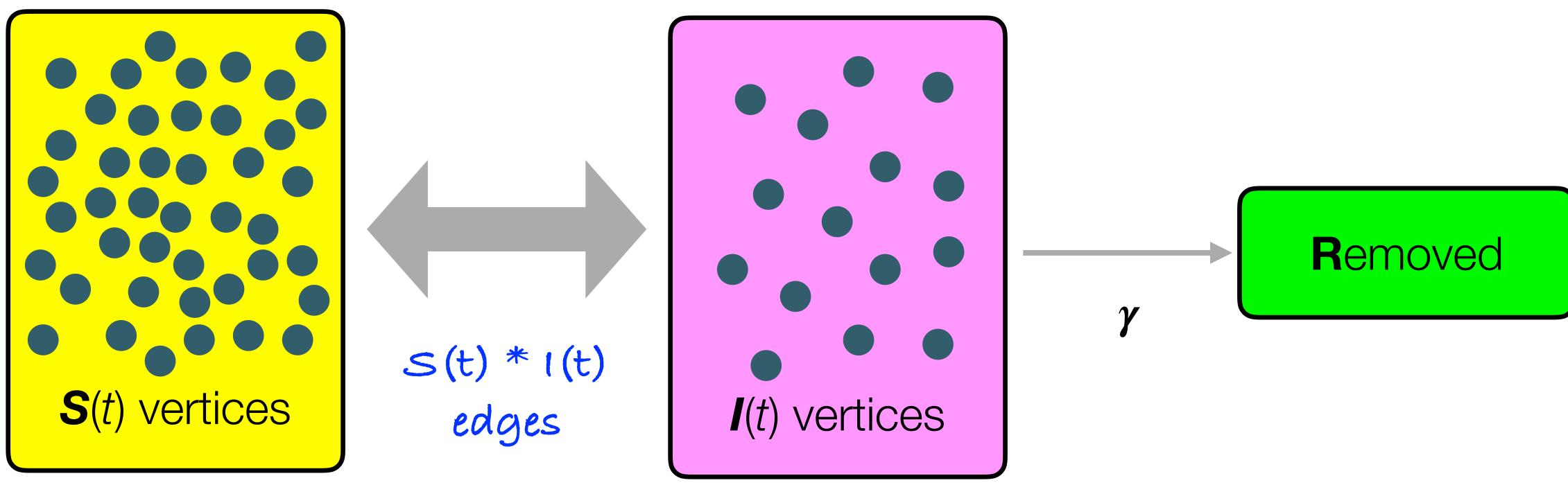


Towards COVID-19 Quantitative Realities - SEIR and SEAIR





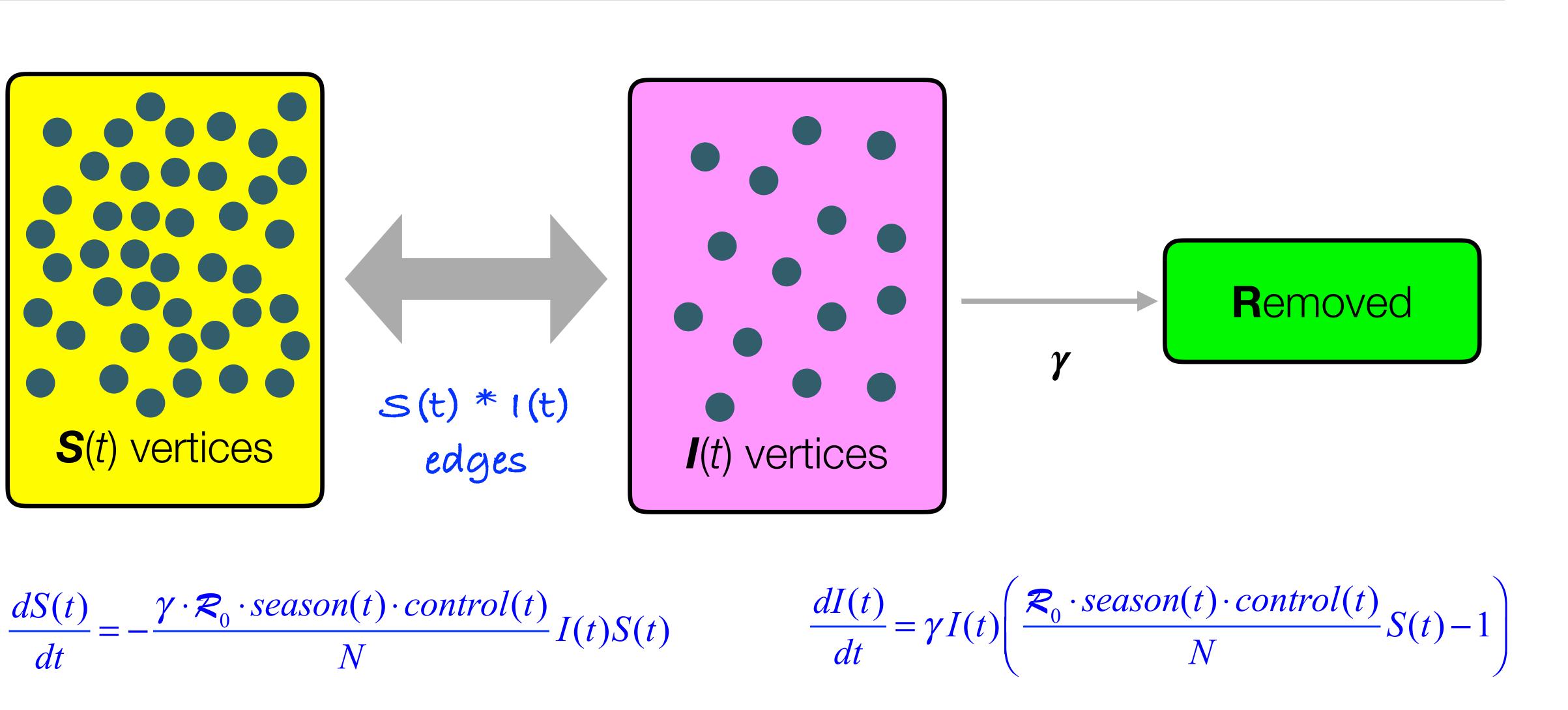
SIR Compartmental Epidemic Model - zooming on the mass action mechanism



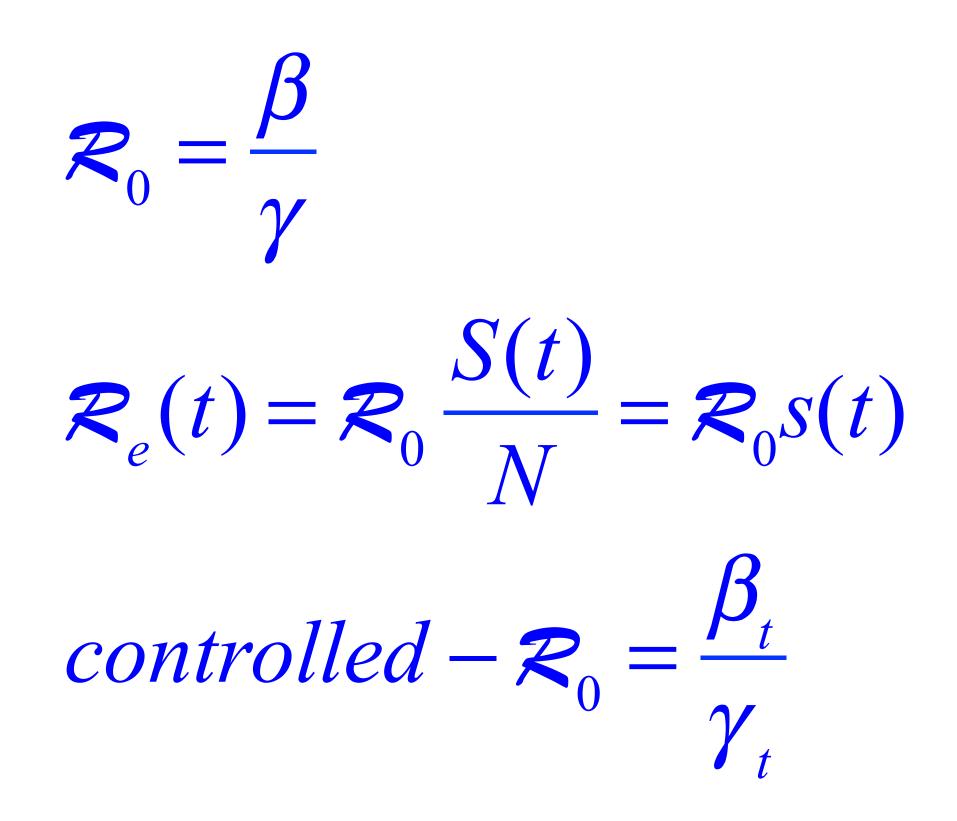
 $\frac{dS(t)}{dt} = -\frac{\beta}{N}I(t)S(t)$

 $\frac{dI(t)}{dt} = \frac{\beta}{N}I(t)S(t) - \gamma I(t)$

SIR Compartmental Epidemic Model - zooming on the mass action mechanism

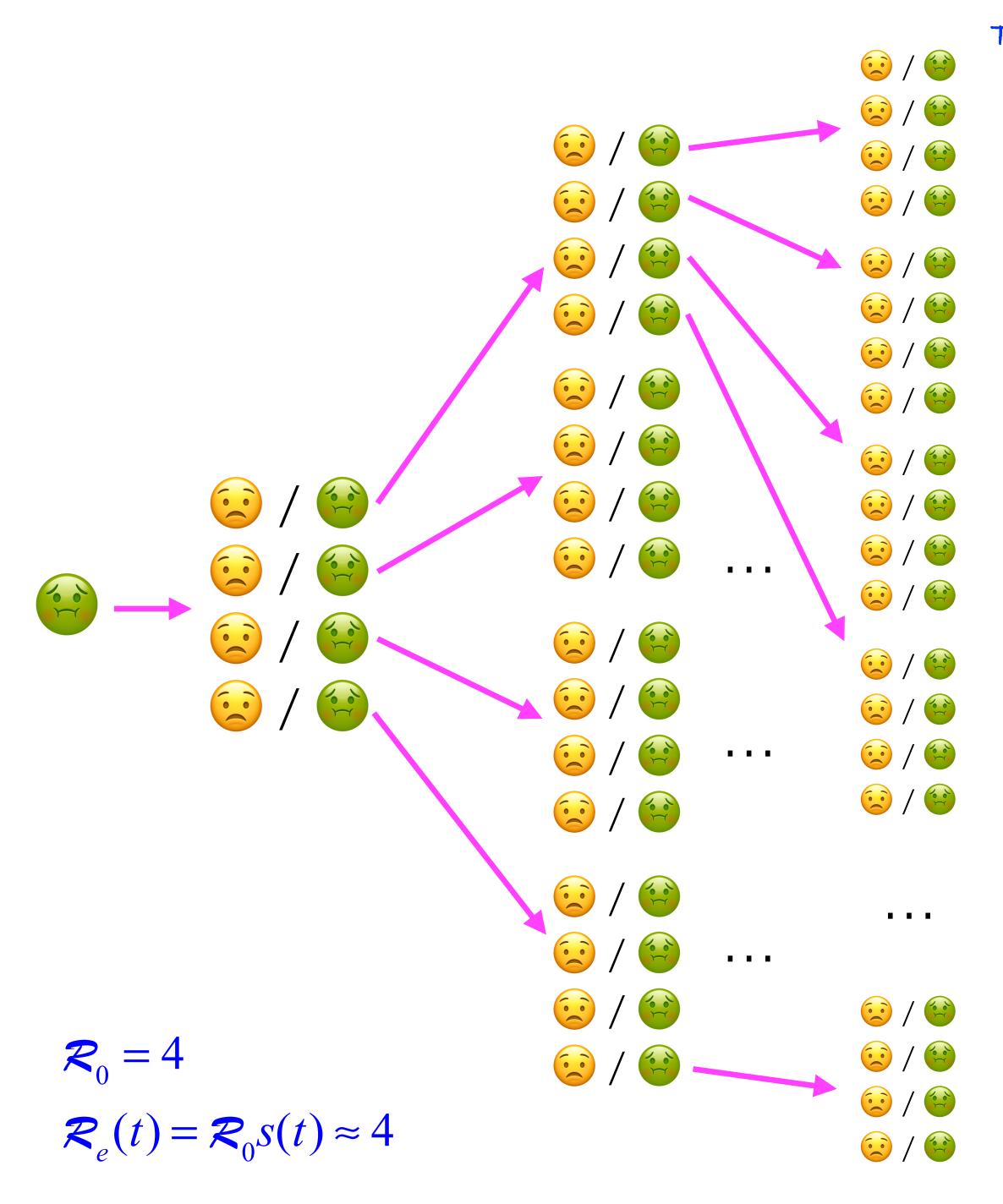


All Those "R"s

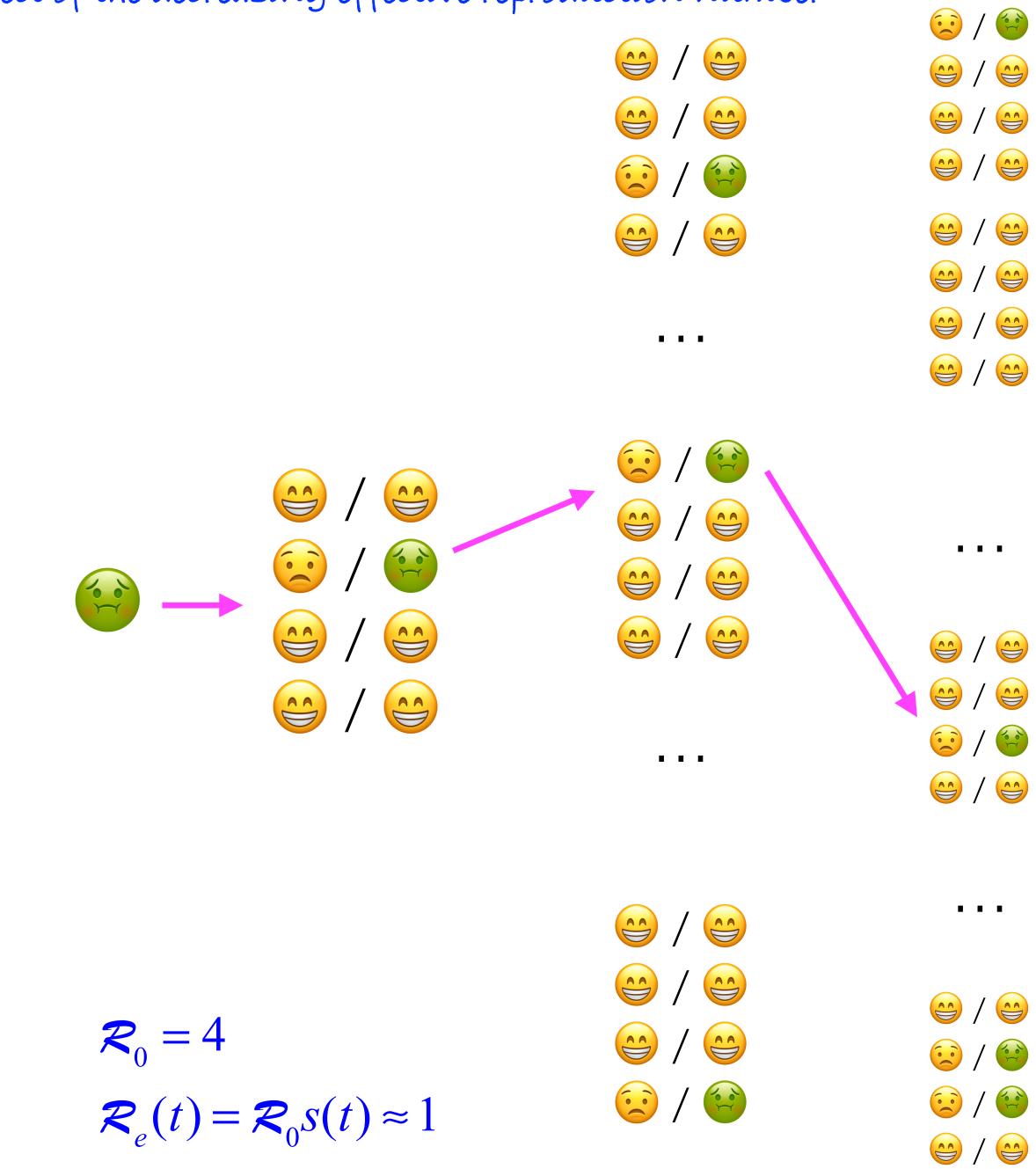


*) In this particular model

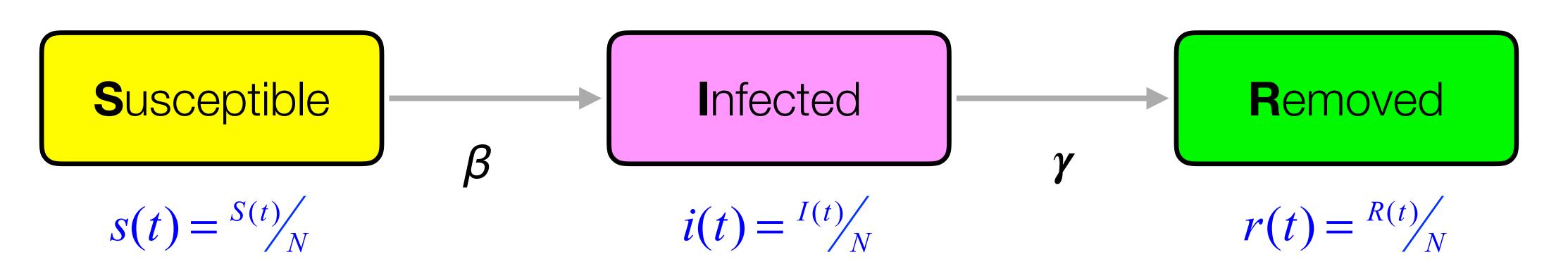
- In general, the average number of people one infectious individual infects under particular circumstances.
- Basic reproduction number \mathbf{R}_0
 - inherent model constant, describes important qualitative aspects, e.g. equilibria and their stability
- Effective reproduction number $\mathbf{R}_{e}(t)$
 - what we observe in daily experience
- Controlled reproduction number $\mathbf{R}_{0,t}$
 - what we aim for with our interventions



The effect of the decreasing effective reproduction number



Finalising the Picture and Going Dimensionless



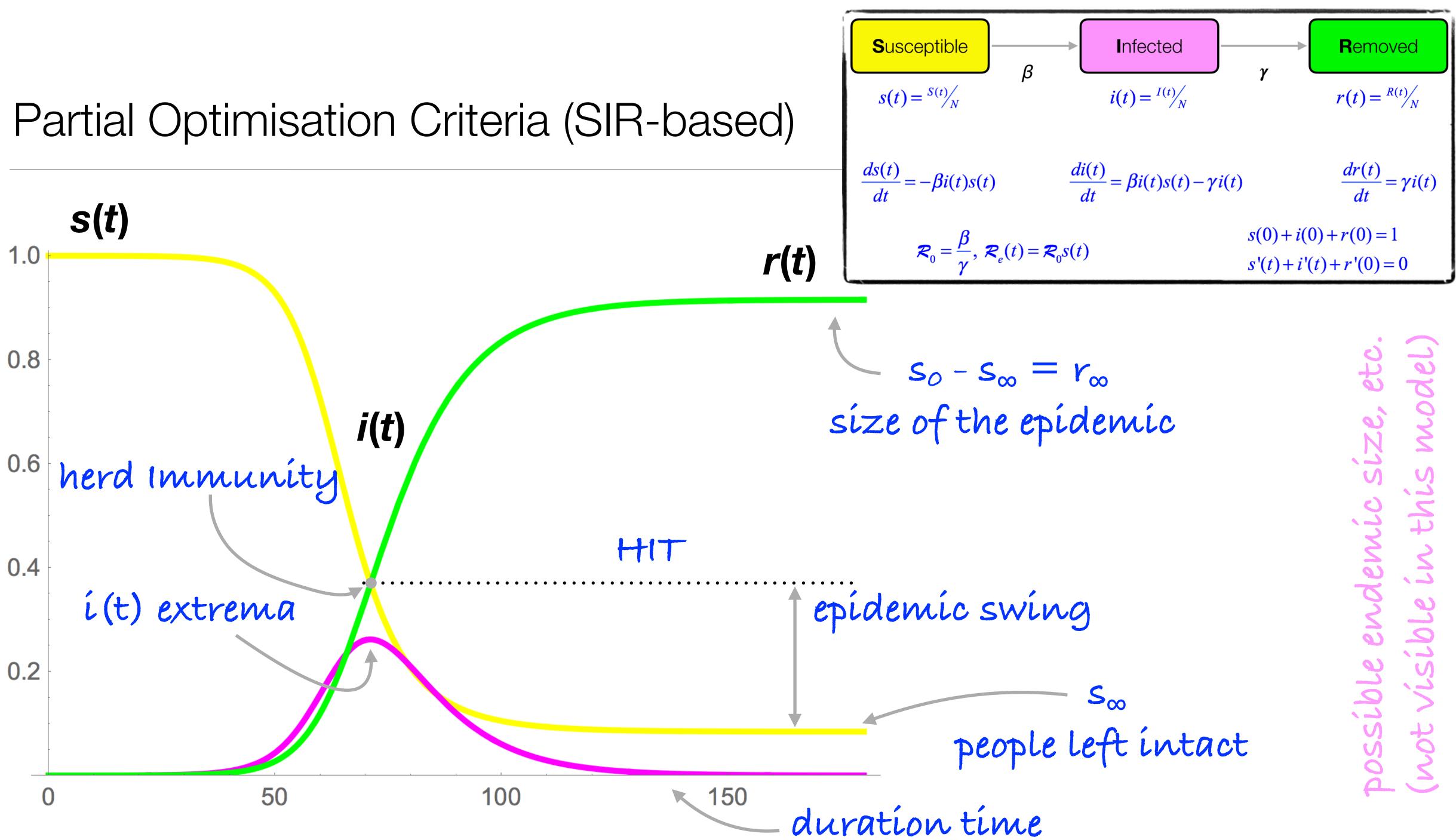
 $\frac{ds(t)}{dt} = -\beta i(t)s(t)$

 $\mathcal{R}_0 = \frac{\beta}{\gamma}, \ \mathcal{R}_e(t) = \mathcal{R}_0 s(t)$

 $\frac{di(t)}{dt} = \beta i(t)s(t) - \gamma i(t)$

 $\frac{dr(t)}{dt} = \gamma i(t)$

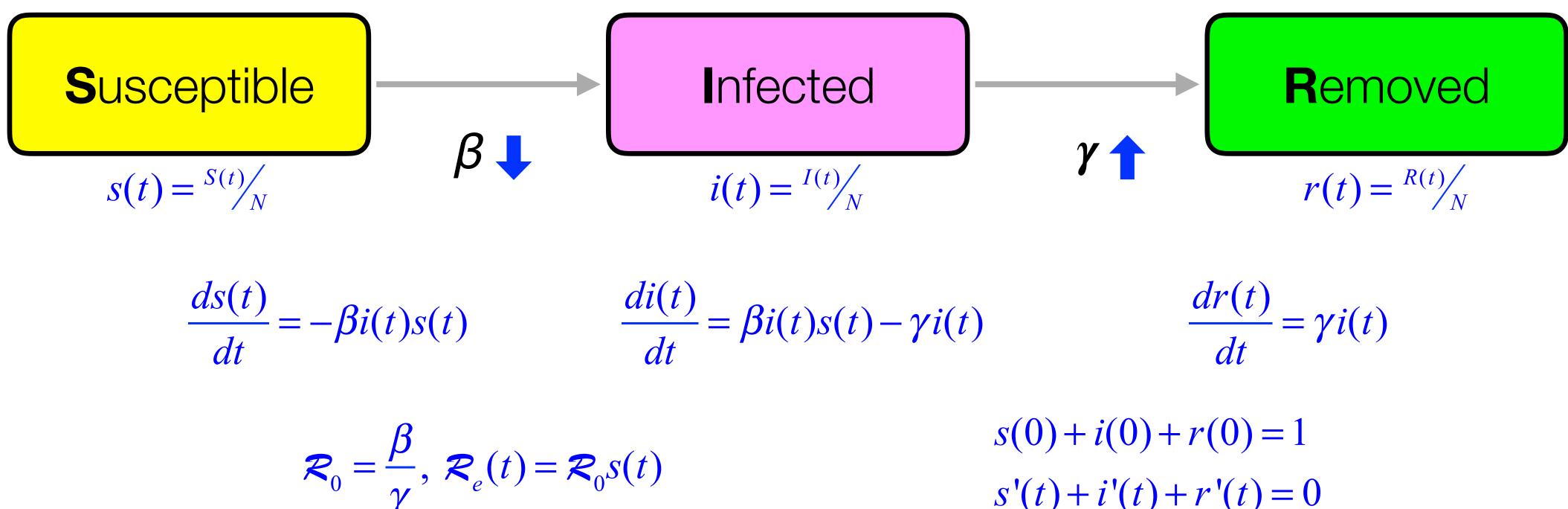
s(0) + i(0) + r(0) = 1s'(t) + i'(t) + r'(0) = 0



Anti-Epidemic Interventions

transmission rate intervention 4

- moderating contact rate
- decreasing infection probability



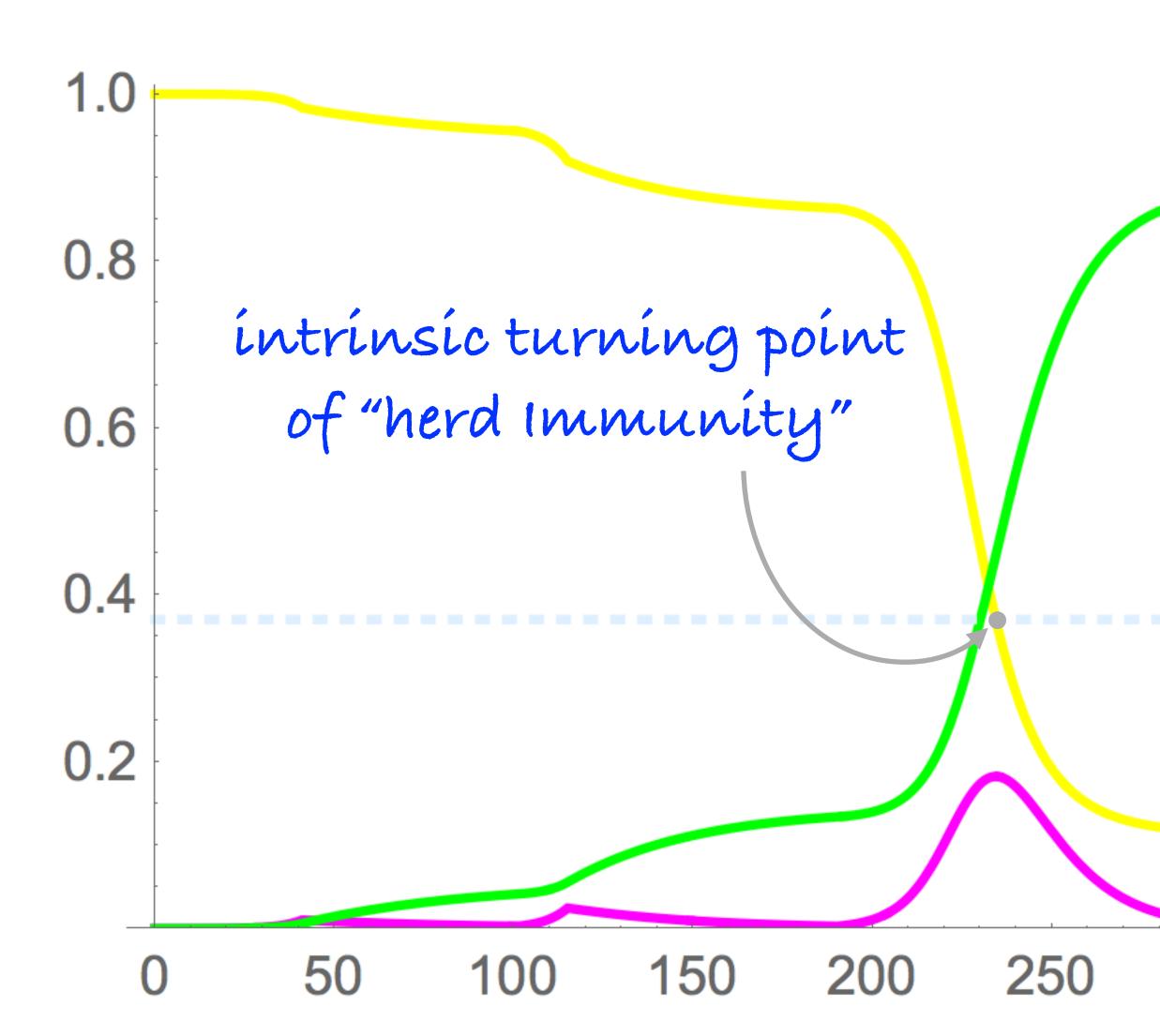
removal rate intervention 1

- broad testing
- contact tracing
- vaccination

$$\frac{dr(t)}{dt} = \gamma i(t)$$

s'(t) + i'(t) + r'(t) = 0

Example: Qualitative Study of Two Ideal Consecutive Lockdowns



locked for days: 41-101, 115-190 equivalent rep. no. reduced to 0.81

> S(susceptible) I(infected) R(removed) 80 R0

Real-World Lockdown Serious Modelling Example (UK)

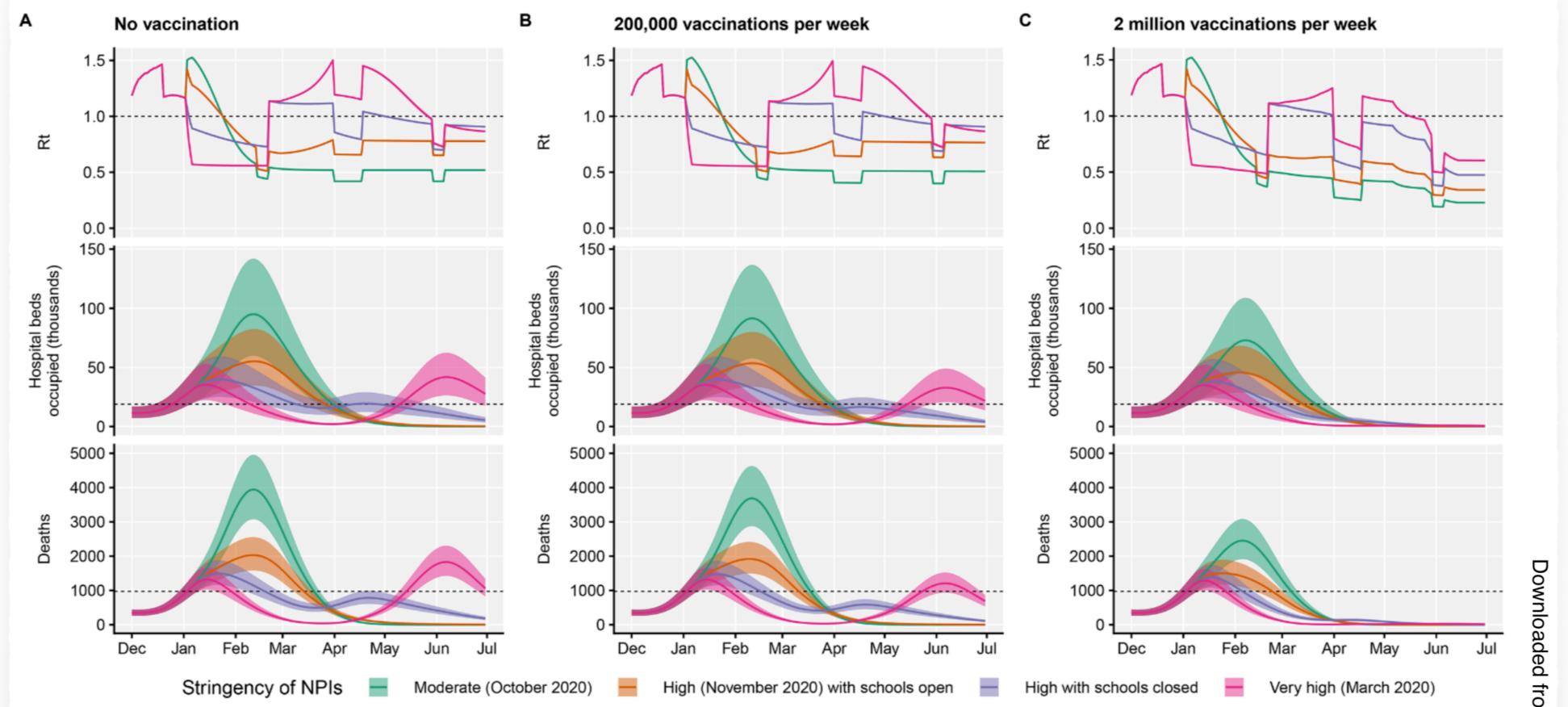
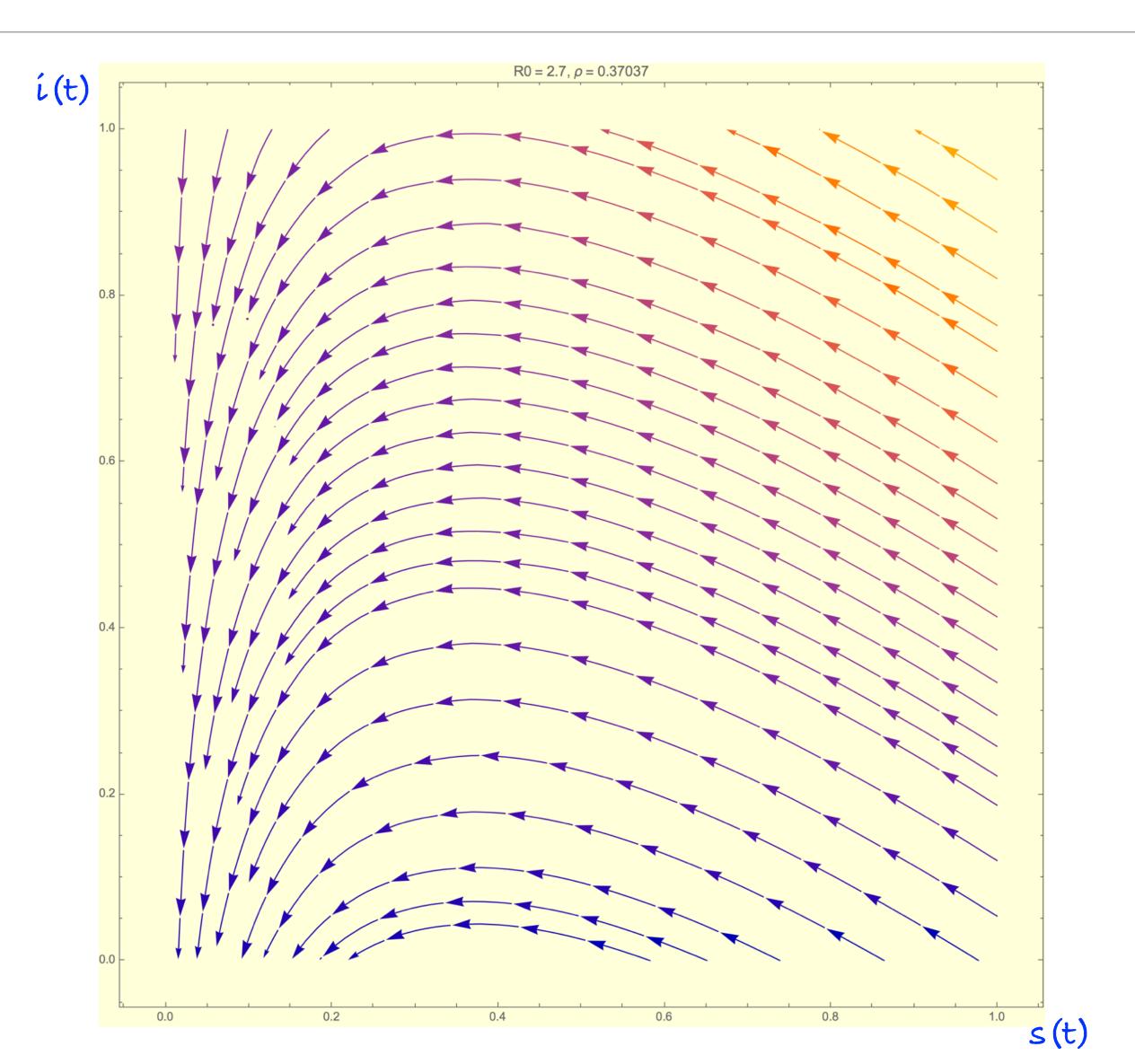
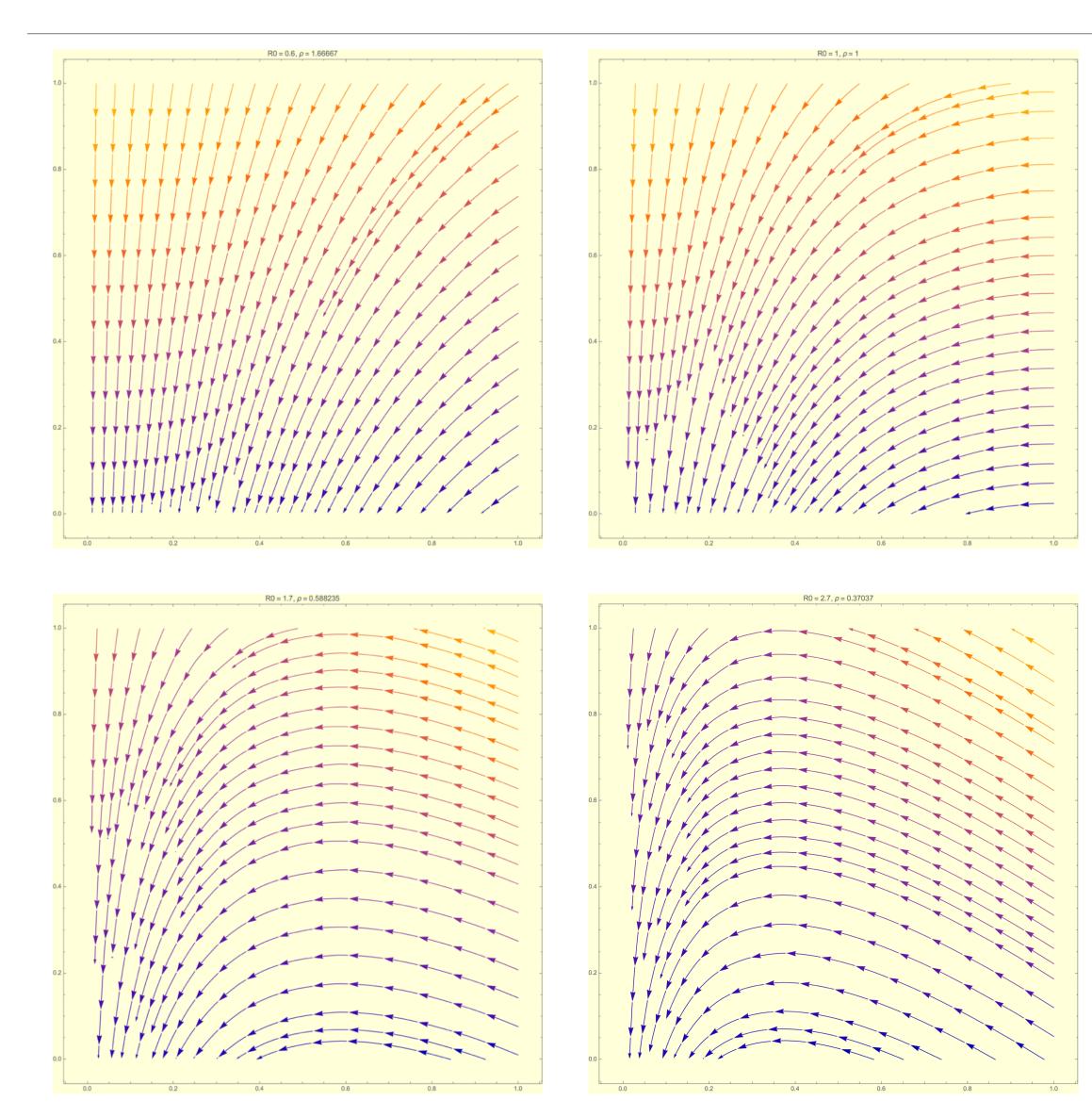


Fig. 4. Projections of epidemic dynamics under different control measures. We compare four alternative scenarios for non-pharmaceutical interventions from 1 January 2021: (i) mobility returning to levels observed during relatively moderate restrictions in early October 2020; (ii) mobility as observed during the second lockdown in England in November 2020, then gradually returning to October 2020 levels from 1 March to 1 April 2021, with schools open; (iii) as (ii), but with school

Epidemic Phase Portrait (yet, another viewpoint on the epidemic)

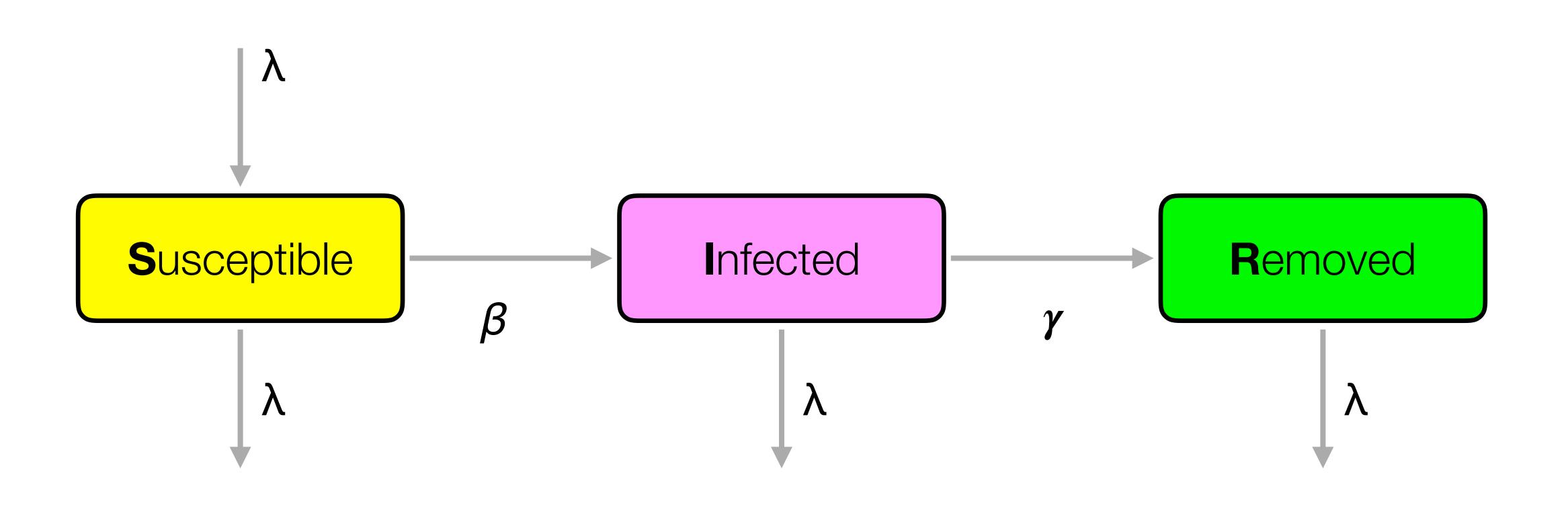


R₀ Dependency and Consequences



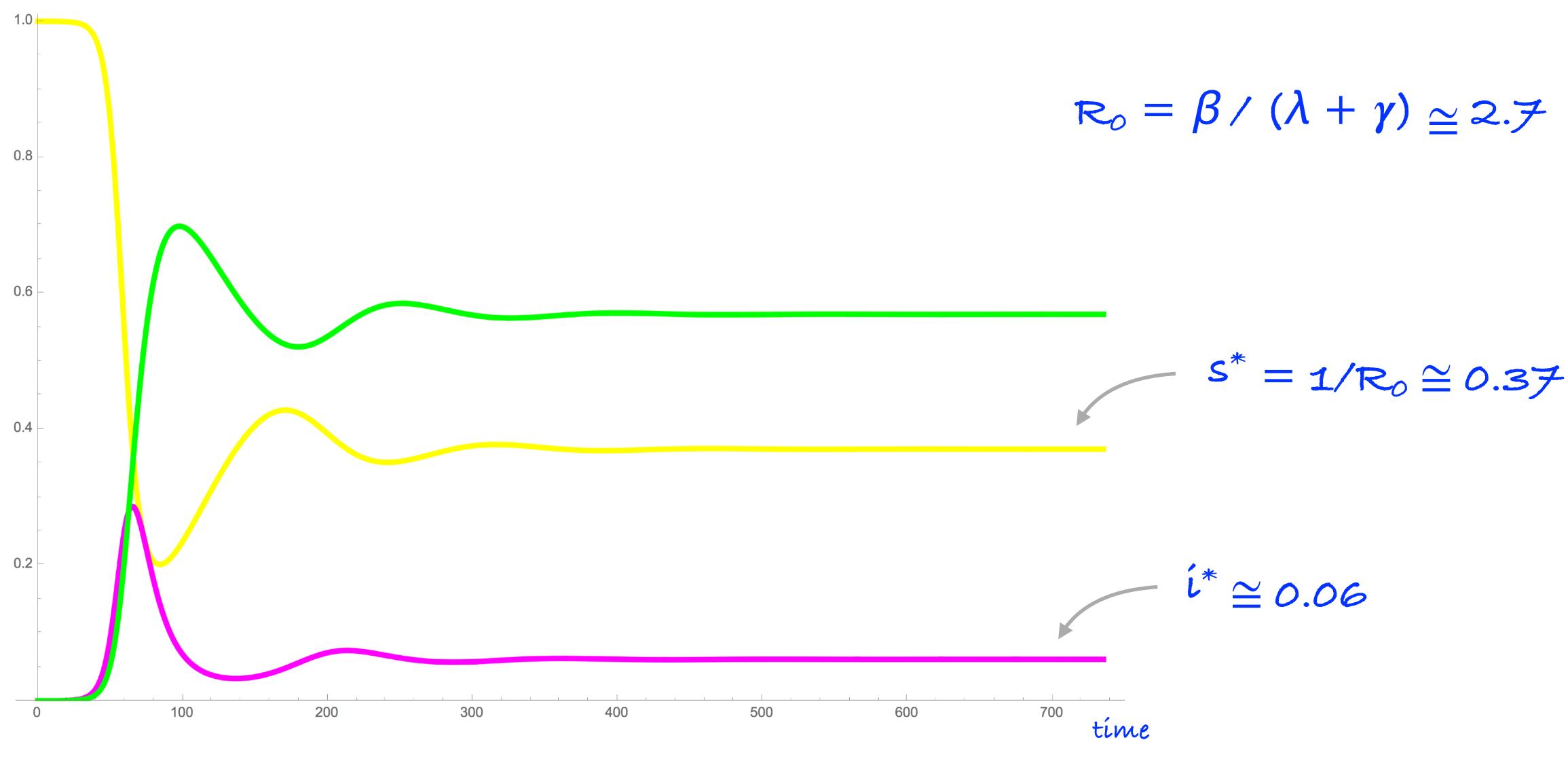
- phase field together with the herd immunity threshold ρ is fully determined by the (possibly controlled) basic reproduction number ($\rho = 1/R_0$)
- lockdowns primarily control **basic R**, this is actually swapping one field for another one (back-andforth)
- vaccination addresses the effective R, this is actually a wormhole in the unchanged field

SIR Compartmental Epidemic Model - including simple demography, now



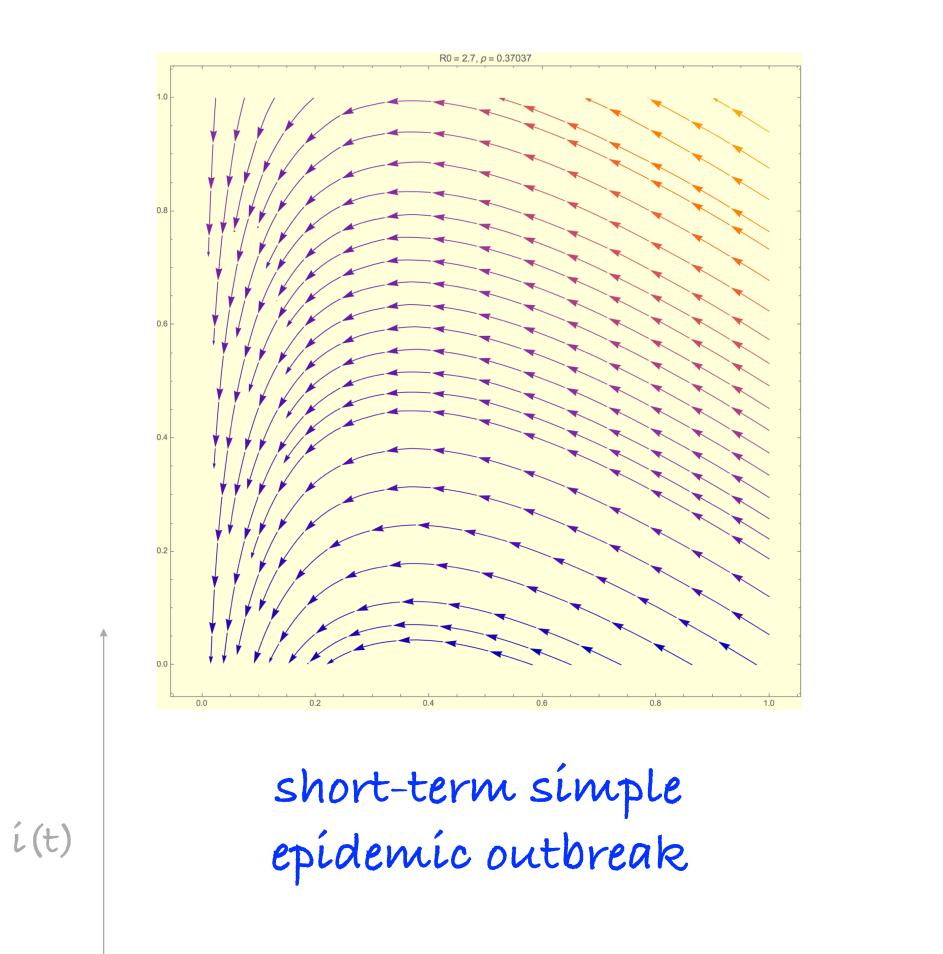
we set λ very high (with respect to a pure demography)here to illustrate endemic equilibrium in general
on the other hand, in reality, demography is not the only reason for endemic states anyway

Endemic Equilibrium is Asymptotically Stable for $\mathbf{R}_0 > 1$

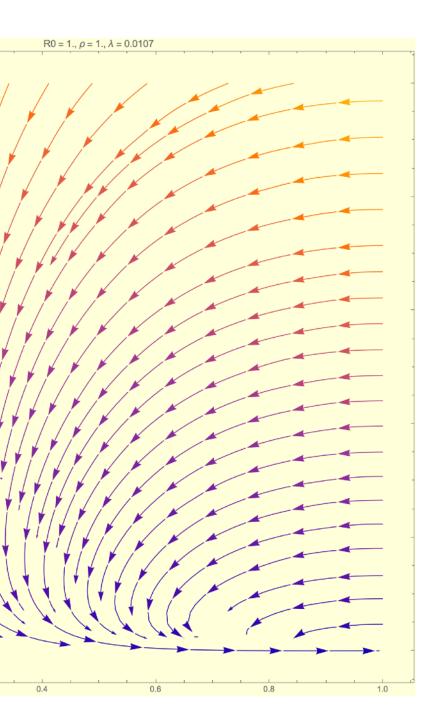


- we set λ very high (with respect to a pure demography)here to illustrate endemic equilibrium in general
- on the other hand, in reality, demography is not the only reason for endemic states anyway

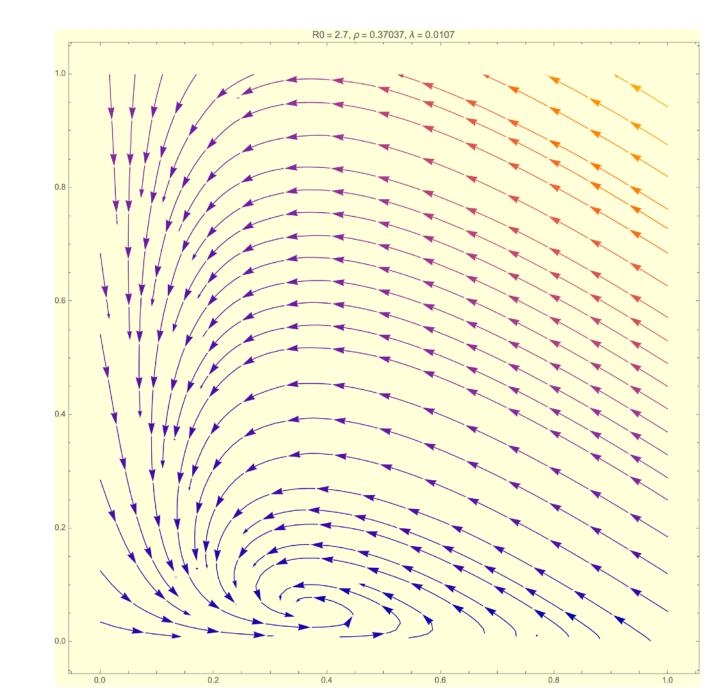
Direction field of the model* equations brings yet-another viewpoint



s(t)



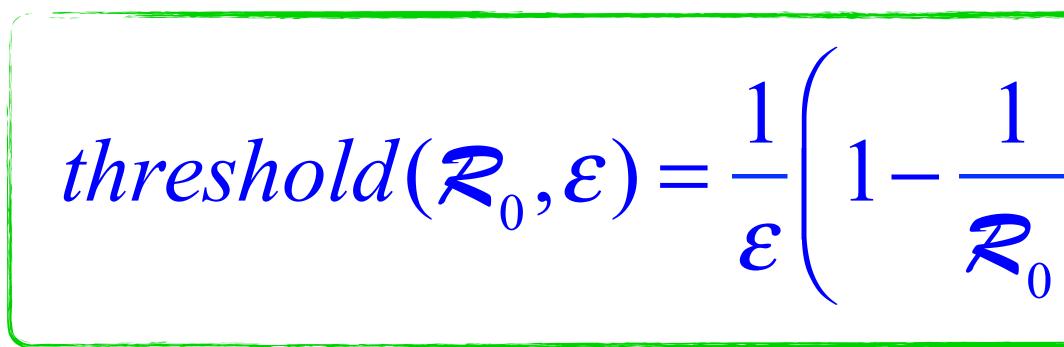
long-term equilibrium disease-free



long-term equilibrium endemíc

*) SIR and SIR with demography

Basic Vaccination Equation Revisited for HIT



В	R ₀				
	2.7	3.5	4.5	5.5	6
92 %	68 %	78 %	85 %	89 %	92
86 %	73 %	83 %	90 %	95 %	98
80 %	79 %	89 %	97 %	—	
63 %	100 %				

.45				
2	%			
8	%			
_	-			
_	_			

- Assumptions:
 - vaccine distributed *uniformly among* yet-susceptible people
 - vaccine efficacy ε for spreading
 - immunity does not vanish in near time (circa one year, at least)
- Recovered people fraction bearing natural immunity then sums up with the vaccinated fraction
 - not shown here for clarity
 - be careful with overlaps

Vaccination - not **sooo** basic equations (ODE stability - SIS model)

$$\mathcal{R}(\psi) = \frac{\beta(\mu + (1 - \varepsilon)\psi)}{(\mu + \gamma)(\mu + \psi)}$$

$$\mathcal{R}(\boldsymbol{\psi}=0) = \mathcal{R}_0 = \frac{\beta}{\mu + \gamma}$$
$$\mathcal{R}(\boldsymbol{\psi} \to \infty) \to (1 - \varepsilon)\mathcal{R}_0$$

$$\mathcal{R}(\boldsymbol{\psi}^*) = 1 \Longrightarrow \boldsymbol{\psi}^* = \frac{(\mathcal{R}_0 - 1)\mu}{1 - (1 - \varepsilon)\mathcal{R}_0}$$

note $\boldsymbol{\psi}^* \to \infty$ for $(1 - \varepsilon)\mathcal{R}_0 \to 1$

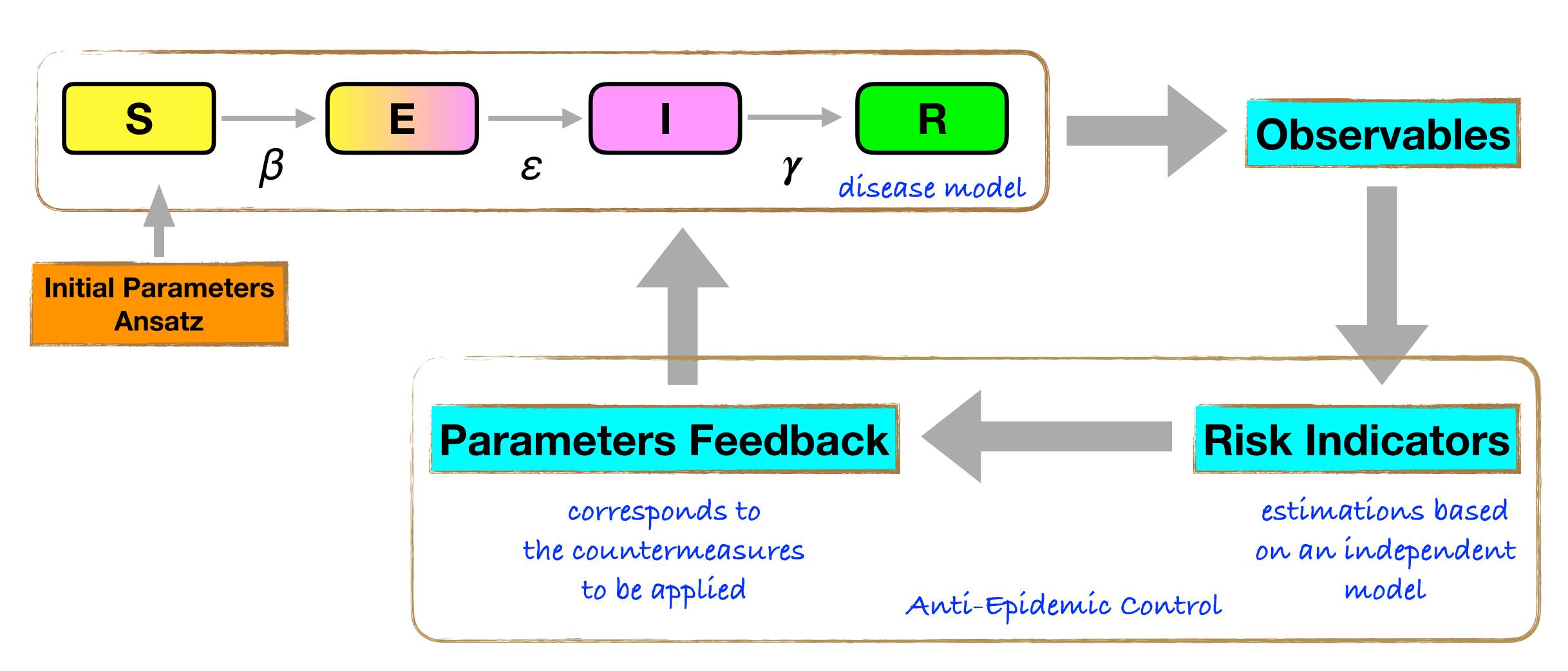
- efficacy & speed (!)
- uniformity (!)
- after all, vaccination dynamics is
 - complicated enough for the backward bifurcation to occur
 - coexistence mechanism for multiple pathogen variants

And then, for the sake of completeness

 $p_{\varepsilon} = \frac{\psi^{*}}{\mu + \psi^{*}} = \frac{1}{\varepsilon} \left(1 - \frac{1}{\varepsilon} \right)$

- Despite being the same numerically, the vaccinated fraction threshold is now given as a result of the vaccination dynamics, instead of being just a prime goal.
- This is a better starting position for investigation of the epidemic/ endemic dynamics.

Anti-Epidemic Controls Simulation (for whatever purpose)



*) Note the SEIR model is just an example

Consider This Control Chain

epidemic code \rightarrow the pandemic \rightarrow the government \rightarrow the economics

How Much Can We Trust the Models?

- Not much when a deliberate manipulation is under question
- There are two principal vulnerabilities allowing for "anti-epidemic take over"
 - invertibility, we can find a calibration for any physically plausible epidemic forecast
 - reversibility, we can track this calibration back in time to see how to manipulate contemporary statistical data to get the desired forecast
- Assuming we can predict the governmental reaction on the forecast, we could control the state this way

Countermeasure? Generalised Kerckhoffs's Principle

Auguste Kerckhoffs, 1883

- Strict transparency
 - statistical data including the noise estimation and cancellation
 - models
 - calibration
 - interpretation
- fs, 1883 decision making

Long Story Short

Trust the mathematics, not so the mathematicians.



Conclusion

an epidemic code

 \rightarrow the companies

- shall talk about the security and safety of our models
 - simply put **trust**, but test

• The model description, the ODE system in particular here, can be viewed as

epidemic code \rightarrow the pandemic \rightarrow the government \rightarrow the economics

On the other hand, the more important decisions are to be made, the more we

Revision History

- 2021/06/29: release version 1