LWE-based Cryptography Elementary Principles and Constructions

Tomáš Rosa, Ph.D.

Cryptology and Biometrics Competence Centre, Raiffeisenbank, Prague Faculty of Mathematics and Physics, Charles University, Prague

The **Two Flavors** of Quantum-Resistant Mechanisms

- **Cryptographic protocols based on quantum mechanics laws** •
 - Quantum Key Distribution (QKD), for instance —
 - unconditionally secure, provided everything in the whole scheme is
 - speed versus distance limits
 - cloud limits or even impossibility
 - not every classical scheme has its practical quantum variant, e.g. signatures
 - security authorities NSA, BSI, NCSC, ANSSI stay highly reserved at this moment -

Classical algorithms for classical computing platforms •

- post-quantum cryptographic suites —
- recommended widespread approach and our main topic here

The Algorithmic Approach of PQC

Traditional crypto	osystems	Purpose	PQC Replacements					
Integer factorization	RSA							
Discrete le gerithm	ElGamal	otior	Crystals-Kyber					
Discrete logarithm	DH	ICIYA	(ML-KEM, FIPS 203)	Learning with errors				
Elliptic curve discrete logarithm	ECDH							
Integer factorization	RSA		Crystals-Dilithium (ML-DSA, FIPS 204)	Learning with errors				
Discrete logarithm	Discrete logarithm DSA entropy		Falcon (FN-DSA, FIPS 206)*	Short integer solution				
Elliptic curve discrete logatithm	ECDSA	<u>i</u>	SPHINCS+ (SLH-DSA, FIPS 205)	Hash inversion				

*) FIPS 206 draft is "... planned for late 2024."

Learning With Errors (LWE) standard, decision version

Definition 1. For positive integers m, n, q, and $\beta < q$, the LWE_{n,m,q,β} problem asks to distinguish between the following two distributions: 1. $(\mathbf{A}, \mathbf{As} + \mathbf{e})$, where $\mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m}, \mathbf{s} \leftarrow$ 2. (A, u), where $\mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m}$ and $\mathbf{u} \leftarrow$

 $[\beta] = \{-\beta, .$

furthermore, in practice, we usually set m = n

$$egin{aligned} &-[eta]^m, \mathbf{e} \leftarrow [eta]^n \ &\mathbb{Z}_q^n. \end{aligned}$$

 $a \leftarrow S$ means that a is chosen uniformly at random from the set S

$$.., -1, 0, 1, ..., \beta$$

[Lyubashevsky, <u>https://ia.cr/2024/1287</u>], cf. also [Peikert, <u>https://ia.cr/2015/939</u>]

LWE Gate - General Definition

Standard-LWE λ_0	$\Omega \in \mathbb{F}_q^{n \times m} = \mathbb{Z}_q^{n \times m}$ $\alpha \in \mathbb{F}_q^m$ $\beta, \varepsilon \in \mathbb{F}_q^n$
Ring-LWE λ_{ρ}	$\Omega \in R_q = \mathbb{Z}_q[x] / \langle x^n + \alpha \in R_q$ $\beta, \varepsilon \in R_q$
Module-LWE λ_{μ}	$\Omega \in R_q^{n \times m}, R_q \text{ see above}$ $\alpha \in R_q^m$ $\beta, \varepsilon \in R_q^n$

LWE Gate - Security Arguments

Standard-LWE λ_0	β indistinguishable from $u \leftarrow \begin{bmatrix} z \\ z \end{bmatrix}$ in particular, $\beta \mapsto \alpha$ is hard
Ring-LWE λ_{ρ}	β indistinguishable from $u \leftarrow \begin{bmatrix} n \\ n \end{bmatrix}$ in particular, $\beta \mapsto \alpha$ is hard
Module-LWE λ_{μ}	β indistinguishable from $u \leftarrow \begin{bmatrix} n \\ n \end{bmatrix}$ in particular, $\beta \mapsto \alpha$ is hard

Standard-LWE Encryption Scheme setup phase

we set m = n, for the general LWE gate

 $\overrightarrow{e_1} \leftarrow \left[\beta_2\right]^m$ sk: $\overrightarrow{s} \leftarrow \left[\beta_1\right]^m$ pk: $\mathbf{A} \leftarrow \mathbb{Z}_q^{m \times m}$ pk: $\vec{t} = \mathbf{A}\vec{s} + \vec{e_1}$

Standard-LWE Encryption Scheme encryption/decryption of one-bit messages

Standard-LWE Encryption Scheme encryption/decryption of one-bit messages

sk:
$$\vec{s} \leftarrow [\beta]^m$$
, pk: $\left(\mathbf{A} \leftarrow \mathbb{Z}_q^{m \times m}, \vec{t} = \mathbf{A}\vec{s} + \vec{e_1}\right)$, where: $\vec{e_1} \leftarrow [\beta]^m$

$$\overrightarrow{r} \leftarrow [\beta_1]^m$$

$$\overrightarrow{e_2} \leftarrow [\beta_2]^m, e_3 \leftarrow [\beta_2]$$

$$\overrightarrow{c_1} = \mathbf{A}^T \overrightarrow{r} + \overrightarrow{e_2}$$

$$c_2 = \overrightarrow{t}^T \overrightarrow{r} + e_3 + \mu \left[\frac{q}{2}\right]$$

$$\overrightarrow{r} = \overrightarrow{r} \overrightarrow{r} \overrightarrow{r} + \overrightarrow{r} + \overrightarrow{r} = \overrightarrow{r} \overrightarrow{r} = \overrightarrow{$$

note $\vec{s}^T \mathbf{A}^T = \vec{t}^T - \vec{e_1}^T$

Geometric interpretation invoking adjoint operator mechanics.

Ring-LWE Encryption Scheme setup phase

 $p(x) \leftarrow S$ means that p(x) coefficients are all chosen uniformly at random from the set S

Ring-LWE Encryption Scheme encryption/decryption of *n*-bit messages

note $s(x)c'_{1}(x) = c'_{1}(x)s(x)$

Ring-LWE Encryption Scheme encryption/decryption of *n*-bit messages

Linear Algebra Viewpoint

Let $a(x), b(x) \in \mathbb{Z}[x]/\langle f(x) \rangle$ and fix a(x), then:

$$a(x)b(x) = a(x)\sum_{i=0}^{d-1} b_i x^i \mod f(x) = \sum_{i=0}^{d-1} b_i \left(a(x)x^i \mod f(x)\right).$$

$$\mathbf{A} = \left(\overrightarrow{a(x)}, \ \overrightarrow{a(x)x} \mod f(\overrightarrow{x}), \ \dots, \ \overrightarrow{a(x)x^{d-1}} \mod f(\overrightarrow{x})\right).$$

This can be interpreted as: $\overrightarrow{a(x)b(x)} = A\overrightarrow{b(x)}$, for $A \in \mathbb{Z}^{d \times d}$ with columns:

R-Modules in MLWE: (pseudo) Linear Algebra Viewpoint

$$\left\langle \vec{u}, \vec{v} \right\rangle$$

Module-LWE Encryption Scheme setup phase

we set m = n, for the general LWE gate

$$\vec{e_1} \leftarrow [\beta_2]^m$$

sk: $\vec{s} \leftarrow [\beta_1]^m$
pk: $\mathbf{A} \leftarrow R_q^{m \times m}, \ R_q = \mathbb{Z}_q[x] / \langle x^n +$
pk: $\vec{t} = \mathbf{A}\vec{s} + \vec{e_1}$

+ Let q = 137, n = 4, $R_q = \mathbb{Z}_{137}[x]/(x^4 + 1)$, k = 3.

+ Let
$$a = \begin{bmatrix} 93 + 51x + 34x^2 + 54x^3 \\ 27 + 87x + 81x^2 + 6x^3 \\ 112 + 15x + 46x^2 + 122x^3 \end{bmatrix}$$
 and $b = \begin{bmatrix} 40 + 78x + x^2 + 119x^3 \\ 11 + 31x + 57x^2 + 90x^3 \\ 108 + 72x + 47x^2 + 14x^3 \end{bmatrix} \in \mathbb{R}_q^k$.

+ Then
$$a + b = \begin{bmatrix} 133 + 129x + 35x^2 + 36x^3 \\ 38 + 118x + x^2 + 96x^3 \\ 83 + 87x + 93x^2 + 136x^3 \end{bmatrix}$$
, $a - b = \begin{bmatrix} 53 + 110x + 33x^2 + 72x^3 \\ 16 + 56x + 24x^2 + 53x^3 \\ 4 + 80x + 136x^2 + 108x^3 \end{bmatrix}$,

and $a \cdot b^T = a[1]b[1] + a[2]b[2] + a[3]b[3] = 93 + 59x + 44x^2 + 132x^3$.

V1b: Prerequisites

© Alfred Menezes, August 2024

Example: R_a^k

Kyber and Dilithium

[https://cryptography101.ca/]

29

Module-LWE Encryption Scheme encryption/decryption of *n*-bit messages

Federal Information Processing Standards Publication

Module-Lattice-Based Key-Encapsulation Mechanism Standard

Category: Computer Security

Subcategory: Cryptography

Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8900

This publication is available free of charge from: https://doi.org/10.6028/NIST.FIPS.203

Published August 13, 2024

- Fujisaki-Okamato extension to convert IND-CPA scheme to CCA2 secure one
- Number Theoretic Transform for faster ring operations
 - Mandatory and recommended security checks
 - Key and ciphertext data length optimizations
 - Precise definition of the three parametric ML-KEM schemes based on M-LWE
 - Module Lattice refers to lattices corresponding to certain R-modules

[https://doi.org/10.6028/NIST.FIPS.203]

Algorithm 17 ML-KEM.Encaps_internal(ek, n

Uses the encapsulation key and randomness to generate a key and an associated ciphertext.

Input: encapsulation key ek $\in \mathbb{B}^{384k+32}$. Input: randomness $m \in \mathbb{B}^{32}$. Output: shared secret key $K \in \mathbb{B}^{32}$. Output: ciphertext $c \in \mathbb{B}^{32(d_uk+d_v)}$.

- $\mathbf{1:}~(K,r) \gets \mathbf{G}(m \| \mathbf{H}(\mathbf{ek}))$
- 2: $c \leftarrow K-PKE.Encrypt(ek, m, r)$
- 3: return (K,c)

MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

\triangleright derive shared secret key K and randomness r \triangleright encrypt m using K-PKE with randomness r

Algorithm 18 ML-KEM. Decaps_internal(dk, c)

Uses the decapsulation key to produce a shared secret key from a ciphertext.

Input: decapsulation key dk $\in \mathbb{B}^{768k+96}$. Input: ciphertext $c \in \mathbb{B}^{32(d_uk+d_v)}$. **Output**: shared secret key $K \in \mathbb{B}^{32}$.

1:
$$dk_{PKE} \leftarrow dk[0:384k]$$
 > extr
2: $ek_{PKE} \leftarrow dk[384k:768k+32]$
3: $h \leftarrow dk[768k+32:768k+64]$
4: $z \leftarrow dk[768k+64:768k+96]$
5: $m' \leftarrow K$ -PKE.Decrypt(dk_{PKE}, c)
6: $(K', r') \leftarrow G(m' \| h)$
7: $\bar{K} \leftarrow J(z \| c)$
8: $c' \leftarrow K$ -PKE.Encrypt(ek_{PKE}, m', r')
9: if $c \neq c'$ then
10: $K' \leftarrow \bar{K}$
11: end if
12: return K'

MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

ract (from KEM decaps key) the PKE decryption key > extract PKE encryption key > extract hash of PKE encryption key \triangleright extract implicit rejection value > decrypt ciphertext

 \triangleright re-encrypt using the derived randomness r'

> if ciphertexts do not match, "implicitly reject"

Tabl	e 2.	Appro	oved p
------	------	-------	--------

	n	q	k	η_1	η_2	d_u	d_v	required RBG strength (bits)
ML-KEM-512	256	3329	2	3	2	10	4	128
ML-KEM-768	256	3329	3	2	2	10	4	192
ML-KEM-1024	256	3329	4	2	2	11	5	256

Table 3. Sizes (in bytes) of keys and ciphertexts of ML-KEM

	encapsulation key	decapsulation key	ciphertext	shared secret key
ML-KEM-512	800	1632	768	32
ML-KEM-768	1184	2400	1088	32
ML-KEM-1024	1568	3168	1568	32

parameter sets for ML-KEM

Short Integer Solution (SIS) - standard, search version

that

$$f_{\mathbf{A}}(\mathbf{z}) := \mathbf{A}\mathbf{z} = \sum_{i} \mathbf{a}_{i} \cdot z_{i} = \mathbf{0} \in \mathbb{Z}_{q}^{n}.$$

Definition 4.1.1 (Short Integer Solution (SIS_{*n*,*q*, β ,*m*)). Given *m* uniformly random vectors $\mathbf{a}_i \in \mathbb{Z}_q^n$, form-} ing the columns of a matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, find a nonzero integer vector $\mathbf{z} \in \mathbb{Z}^m$ of norm $\|\mathbf{z}\| \leq \beta$ such

(4.1.1)

[Peikert, <u>https://ia.cr/2015/939]</u>

LWE Gate from the SIS Viewpoint

homogeneous case

The homogeneous and inhomogeneous problems are essentially equivalent for typical params. [Peikert, https://ia.cr/2015/939]

inhomogeneous case

LWE or SIS - Heuristic Arguments

- the problem by opponent? The noisy vector is primarily just an obstacle.
 - we view the solution as a short **coordinate vector** for a lattice
 - we apply **Bounded-Distance-Decoding** to find the solution
- - we view the solution as a certain short **lattice vector directly**
 - we apply a sort of a **Short-Vector-Problem** to find the solution -

• Are we searching for the particular solution that we know it exists and that was used to setup

• Or, are we searching for "something like this" instead, without any a priori hint anything like this was used to setup the problem by opponent? The noisy vector is a natural part of the solution.

Up to a scaling factor, the lattices mentioned for LWE and SIS are duals of each other. [Peikert, https://ia.cr/2015/939]

Module-LWE/SIS Signature Scheme setup phase

the noise vector $\vec{s_2}$ is a part of the secret private key; it governs Aborts in Fiat-Shamir later on

sk: $\overrightarrow{s_1} \leftarrow [\beta_1]^l, \overrightarrow{s_2} \leftarrow [\beta_1]^k$ pk: $\mathbf{A} \leftarrow R_q^{k \times l}, R_q = \mathbb{Z}_q[x] / \langle x^n + 1 \rangle$ pk: $\vec{t} = A\vec{s_1} + \vec{s_2}$

Module-LWE/SIS Schnorr-Fiat-Shamir Signature Scheme signature generation/verification

Module-LWE/SIS Schnorr-Fiat-Shamir Signature Scheme signature generation/verification

pick a small random \vec{y} and compute \overline{w} $c = h\left(\mu, \overrightarrow{w_1}\right), \vec{z} = \vec{y} + c \overrightarrow{s_1}$

$$\overrightarrow{w_{1}} = HighBits \left(\overrightarrow{Az} - c \stackrel{?}{=} h \left(\mu, \overrightarrow{w_{1}} \right) \right)$$

$$result \in \{yes, no\}$$

$$\overrightarrow{Az} - c\overrightarrow{t} = \overrightarrow{Ay} + c\overrightarrow{t} - c\overrightarrow{s_{2}}$$

$$= \overrightarrow{Ay} - c\overrightarrow{s_{2}}$$

$$note \overrightarrow{As_{1}} = \overrightarrow{t} - c\overrightarrow{s_{1}} = c\overrightarrow{s_{1}}$$

$$\overrightarrow{v_1} = HighBits\left(\mathbf{A}\overrightarrow{y}\right)$$

Module-LWE/SIS Schnorr-Fiat-Shamir Signature Scheme forgery through Module-SIS

Federal Information Processing Standards Publication

Module-Lattice-Based Digital Signature Standard

Category: Computer Security

Subcategory: Cryptography

Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8900

This publication is available free of charge from: https://doi.org/10.6028/NIST.FIPS.204

Published August 13, 2024

- Fiat-Shamir with Aborts extension
- Rejection sampling to minimize private key leakage - transcript attack
- Number Theoretic Transform for faster ring operations
- Key and signature data length optimizations
- Precise definition of the three parametric ML-DSA schemes based on M-LWE and M-SIS
 - Module Lattice refers to lattices corresponding to certain R-modules

[https://doi.org/10.6028/NIST.FIPS.204]

Table 2. Sizes	(in bytes) of k	eys and sign	atures of ML-DSA				
	Private Key	Public Key	Signature Size				
ML-DSA-44	2560	1312	2420				
ML-DSA-65	4032	1952	3309		aramatar cat	c	
ML-DSA-87	4896	2592	4627		barameter set	3	
					Values assigi	ned by each pa	arametei
		(see Sectio	ns 6.1 and 6.2 of this do	ocument)	ML-DSA-44	ML-DSA-65	ML-DSA
			<i>q</i> - modulus [see § <mark>6.1</mark>]		8380417	8380417	83804
		ζ - a 512 t	h root of unity in \mathbb{Z}_a [se	1753	1753	175	
		d - $#$ of	dropped bits from ${f t}$ [se	13	13	13	
		$ au$ - $\#$ of \pm	± 1 's in polynomial c [se	39	49	60	
		λ - coll	ision strength of \widetilde{c} [see	§ <mark>6.2</mark>]	128	192	256
		γ_1 - coe	efficient range of ${f y}$ [see	§ <mark>6.2</mark>]	2^{17}	2^{19}	2^{19}
		γ_2 - low-c	order rounding range [so	ee § <mark>6.2</mark>]	(q-1)/88	(q-1)/32	(q-1)
		(k,ℓ) -	\cdot dimensions of ${f A}$ [see ${f s}$	§ <mark>6.1</mark>]	(4,4)	(6,5)	(8,7
		η - p	rivate key range [see §6	5.1]	2	4	2
			$eta= au\cdot\eta$ [see §6.2]	78	196	120	
		ω - max $_{7}$	$\#$ of 1's in the hint ${f h}$ [se	e § <mark>6.2</mark>]	80	55	75
		Challenge	entropy $\log_2 inom{256}{ au} + au$ [see § <mark>6.2</mark>]	192	225	257
		Repetit	ions (see explanation b	elow)	4.25	5.1	3.85
		Cl	aimed security strength		Category 2	Category 3	Catego

SLH-DSA by NIST FIPS 205 for Comparison

private key size = 2 x public key size									security	pk	sig
	n	h	d	h'	a	k	lg_w	m	category	bytes	bytes
SLH-DSA-SHA2-128s	16	62	7	٥	17	11	Λ	20	1	27	7 8 5 6
SLH-DSA-SHAKE-128s	10	05	/	9	ΤΖ	14	4	50	T	52	1 000
SLH-DSA-SHA2-128f	16	66	าา	С	6	33	Λ	34	1	32	17 088
SLH-DSA-SHAKE-128f	10	00	22	5			4				
SLH-DSA-SHA2-192s	24	62	7	9	14	17	4	39	3	48	16 224
SLH-DSA-SHAKE-192s	24	05	/								
SLH-DSA-SHA2-192f	24	66	าา	С	8	33	Λ	42	3	48	35 664
SLH-DSA-SHAKE-192f	24	00	22	5			4				
SLH-DSA-SHA2-256s	27	61	0	0	11	22	Λ	17	E	61	20 702
SLH-DSA-SHAKE-256s	52	04	0	0	14	22	4	+ 4/	J	04	29/92
SLH-DSA-SHA2-256f	27	60	17	Л	0	25	Л	40	F	C 1	
SLH-DSA-SHAKE-256f	32	00	Т/	4	9	22	4	49	5	04	49 000

Table 2. SLH-DSA parameter sets

Vulnerabilities we went through before and probably will go again

- Implementation faults, for instance: •
 - faulty encryption/decryption
 - faulty signature generation/verification
- Computational faults •
 - such as were RSA-CRT vulnerabilities
- Side channels
 - sensitive data leakage

Recent Example - EUCLEAK Attack on YubiKey Series 5

- FIDO2 and EAL5+ certified • cryptographic device
- ECDSA implementation broken via EM • side channel
- Possibly affects broader area of • security microcontrollers by Infineon and broader protocols area
- The failure is in radiating modular inversion procedure
- There is a modular inversion in PACE-• CAM(*) involving chip private key z_A

*) PACE-CAM employed in NFC passports and ID cards (SK)

Figure 1.4: YubiKey 5Ci – EM Acquisition Setup

https://ninjalab.io/eucleak/

NTT - Number Theoretic Transform

- Specialized discrete Fourier transform to speed up multiplication in certain rings of convolution polynomials
- Can be also interpreted as a sort of Chinese Remainder Theorem machinery •
- Is a vital core of LWE based algorithms ML-KEM and ML-DSA
- Is a fruitful target of fault and side channel attacks

$$\begin{split} R_q &:= \mathbb{Z}_q[X] / (X^{256} + 1) \qquad T_q := \bigoplus_{i=0}^{127} \mathbb{Z}_q[X] / \left(X^2 - \zeta^{2\mathsf{BitRev}_7(i) + 1} \right) \\ \hat{f} &:= \left(f \bmod (X^2 - \zeta^{2\mathsf{BitRev}_7(0) + 1}), \dots, f \bmod (X^2 - \zeta^{2\mathsf{BitRev}_7(127) + 1}) \right) \end{split}$$

$$\widehat{f} := \big(f \bmod \big(X^2 - \zeta^{2\mathsf{BitRev_7}(0)+1}\big),$$

$$f\times_{R_q}g=\mathsf{NT}$$

$$\Gamma^{-1}(\hat{f} \times_{T_q} \hat{g}) = \text{NIST EIDS 202: ML KEM A}$$

— NIST FIPS 203: ML-KEM, August 13th, 2024

Floating Point FFT in FALCON (FN-DSA)

naturally invokes side-channels that are uneasy to predict and prevent

Floating-Point 4.1

Signature generation, and also part of key pair generation, involve the use of complex numbers. These can be approximated with standard IEEE 754 floating-point numbers ("binary64" format, commonly known as "double precision"). Each such number is encoded over 64 bits, that split into the following elements:

- a sign $s = \pm 1$ (1 bit);
- an exponent e in the -1022 to +1023 range (11 bits);
- a mantissa m such that $1 \le m < 2$ (52 bits).

In general, the represented value is $sm2^e$. The mantissa is encoded as $2^{52}(m-1)$; it has 53 bits of precision, but its top bit, of value 1 by definition, is omitted in the encoding.

Automatic offloading of sensitive computation to a Floating Point Unit (FPU)

[Falcon: Fast-Fourier Lattice-based Compact Signatures over NTRU, v1.2]

Thank you for your attention

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Cybersecurity Competence Centre. Neither the European Union nor the European Cybersecurity Competence Centre can be held responsible for them.

History (year-month-day format)

- 2025-01-18, version 1 release
- 2024-12-12, version 0.9999 beta better annotation towards adjoint operator
- 2024-11-14, version 0.999 beta clarification note on adjoint operator
- 2024-11-14, version 0.99 beta bunch of typos corrected, mainly captions
- 2024-11-13, version 0.9 beta typos may occur(!)