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Have you said “modelling”?
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SIR Compartmental Epidemic Model 
- based on Kermack-McKendrick theory since 1927

Susceptible Infected Removed
β 𝜸



Towards COVID-19 Quantitative Realities - SEIR and SEAIR

S I R
β 𝜸

E
ε

S

A

R
β

𝜸

E

(1-p)ε

Ipε

𝜶



SIR Compartmental Epidemic Model 
- zooming on the mass action mechanism

S(t) vertices I(t) vertices

Removed
𝜸

S(t) * I(t) 
edges

dS(t)
dt

= − β
N
I(t)S(t) = −λS(t)

dI(t)
dt

= λS(t)− γ I(t)

dR(t)
dt

= γ I(t)

λ = β
N
I(t)

infection force



SIR Compartmental Epidemic Model 
- zooming on the mass action mechanism

S(t) vertices I(t) vertices

Removed
𝜸

S(t) * I(t) 
edges

dS(t)
dt

= −
γ ⋅R0 ⋅season(t) ⋅control(t)

N
S(t)I(t) = −γ Re(t)I(t)

dI(t)
dt

= γ
R0 ⋅season(t) ⋅control(t)

N
S(t)−1

⎛
⎝⎜

⎞
⎠⎟
I(t) = γ (Re(t)−1)I(t)

Re(t) stands for the effective reproduction numberR0 =
β
γ



All Those “R”s

• In general, the average number of people one 
infectious individual infects under particular 
circumstances. 

• Basic reproduction number R0 

- inherent model constant, describes important 
qualitative aspects, e.g. equilibria and their 
stability 

• Effective reproduction number Re(t) 

- what we observe in daily experience 

• Controlled reproduction number R0,t 

- what we aim for with our interventions

R0 =
β
γ

Re(t) = R0

S(t)
N

= R0s(t)

controlled −R0 =
βt
γ t

*) In this particular model
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R0 = 4
Re(t) = R0s(t) ≈ 4

R0 = 4
Re(t) = R0s(t) ≈1

The effect of the decreasing effective reproduction number



Ordinary Differential Equations - What do they say here?

• General form of ODE as used in many 
deterministic models of biological processes 

- incorporates various kinds of growth/
decrease action and handles the 
infinitesimal time steps correctly 

- Λ is an instantaneous absolute rate of 
change of a “degree-zero” growth/decrease 
process 

- 𝜶 is an instantaneous relative rate of 
change of a “degree-one” growth/decrease 
process 

- β analogous to 𝜶, this time for a mass 
action (“degree-two”) growth/decrease 
process

X (t + Δt) = X (t)+ [Λ +α X (t)+ βX (t)Y (t)]Δt
X (t + Δt)− X (t)

Δt
= Λ +α X (t)+ βX (t)Y (t)

lim
Δt→0

X (t + Δt)− X (t)
Δt

= dX (t)
dt

dX (t)
dt

= Λ +α X (t)+ βX (t)Y (t)



Understanding (Isolated) Spontaneous Flow

• We have two connected population decrease/growth sub-models 

- the solution is easy to find analytically 

• Be careful the constant relative rate assumption is helpful, but it is just an approximation 

- this is in turn equivalent to the exponential waiting time distribution, as noted below

For an illustration, let us have
dX (t)
dt

= −γ X (t) and 
dY (t)
dt

= γ X (t)
X Y𝜸



Analytical Solution of (Isolated) Spontaneous Flow

• Having fitted the initial conditions (X0, Y0) and 𝜸, we can run the model back and forth 

- the initial conditions can be further given for any time instant, not just in t = 0 

• This is an example of deterministic models reversibility which is in turn very interesting in itself 

- sure, be careful about the interpretation of the results, e.g. What would y(t) < 0 remind us?

X (t) = X0e
−γ t

Y (t) = X0(1− e
−γ t )+Y0

X Y𝜸

γ = 1
10

time



Cautionary Note: Exponential vs Linear Decrease 
- exponential decrease speed also decreases exponentially

time exp lin
0 1000 1000
1 905 900
2 819 800
3 741 700
4 670 600
5 607 500
6 549 400
7 497 300
8 450 200
9 407 100

10 368 0

γ = 1
10



Fitting the 𝜸 Rate

• FW(t) is then the cumulative distribution function of a random variable W denoting the waiting time until a randomly chosen 
member of X leaves this compartment 

- this is the exponential distribution with E[W] = 1/𝜸 and median m[W] = (ln 2)/𝜸 

• So, we can fit the rate 𝜸 as the reciprocal of the (estimated) mean time of staying in the compartment X

X 𝜸
X (t)
X0

= e−γ t

FW (t) = 1−
X (t)
X0

= 1− e−γ t

Y

1
γ
= 10

ln2
γ



Understanding (Isolated) Induced Flow

V X
λ(X, t)

dV (t)
dt

= −λ(X ,t)V (t) = − β
N
X (t)V (t)

dX (t)
dt

= λ(X ,t)V (t) = β
N
X (t)V (t)

• In epidemiology, λ(X, t) is also called infection force 

- it brings a nonlinear term invoking the law of mass action mechanism 

• Note X(t)V(t) is corresponds to the number of possibly infective edges in the complete bipartite contact graph 
(assuming ideal mixing) KS(t),I(t) of the population network in the given time instant 

- β / N is the probabilistic instantaneous relative rate of the infection spreading through these edges



Isolated Mass Action Solution Example

• Solution found numerically, though this particular one can still be found analytically, noting X(t) = N - V(t) 

- leading to the logistic equation / curve 

- contains not so surprising (almost) exponential episodes followed by somewhat relaxed regions

V X
λ(X, t) = ωX(t) ω = 1

6000

time



Exponential, Linear, and Mass Action Slopes Comparison



Finalising the Picture and Going Dimensionless

Susceptible Infected Removed
β 𝜸

ds(t)
dt

= −βi(t)s(t) di(t)
dt

= βi(t)s(t)− γ i(t) dr(t)
dt

= γ i(t)

s(0)+ i(0)+ r(0) = 1
s '(t)+ i '(t)+ r '(0) = 0

R0 =
β
γ

,  Re(t) = R0s(t)

s(t) = S (t )
N i(t) = I (t )

N r(t) = R(t )
N



Partial Optimisation Criteria (SIR-based)

s(t)

i(t)

r(t)

i(t) extrema
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Anti-Epidemic Interventions

Susceptible Infected Removed
β 𝜸

transmission rate intervention ⬇ 

- moderating contact rate 
- decreasing infection probability

removal rate intervention ⬆ 

- broad testing 
- contact tracing 
- vaccination

ds(t)
dt

= −βi(t)s(t) di(t)
dt

= βi(t)s(t)− γ i(t) dr(t)
dt

= γ i(t)

s(0)+ i(0)+ r(0) = 1
s '(t)+ i '(t)+ r '(t) = 0

R0 =
β
γ

,  Re(t) = R0s(t)

⬇ ⬆s(t) = S (t )
N i(t) = I (t )

N r(t) = R(t )
N



Example: Qualitative Study of Two Ideal Consecutive Lockdowns

locked for days: 41-101, 115-190 
controlled-R0 reduced to 0.81

intrinsic turning point 
of “herd Immunity”

HIT



Example: Infectious Compartment Comparative Close-Up



Real-World Lockdown Serious Modelling Example (UK)
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https://science.sciencemag.org/content/early/2021/03/03/science.abg3055


Epidemic Phase Portrait (yet, another viewpoint on the epidemic)

s(t)

i(t)



R0 Dependency and Consequences

- phase field together with the herd 
immunity threshold ⍴ is fully 
determined by the (possibly 
controlled) basic reproduction 
number (⍴ = 1/R0) 

- lockdowns primarily control basic 
R, this is actually swapping one field 
for another one (back-and-forth) 

- vaccination addresses the effective 
R (in this model), it is actually a 
wormhole in the unchanged field



SIR Compartmental Epidemic Model 
- including simple demography, now

Susceptible Infected Removed
β 𝜸

Λ / N* = μ

μ μ μ

-  we set μ very high (with respect to a pure demography)here to illustrate endemic equilibrium in general 
-  on the other hand, in reality, demography is not the only reason for endemic states anyway



Endemic Equilibrium is Asymptotically Stable for R0 > 1

time

 s* = 1/R0 ≅ 0.37

 i* ≅ 0.06

R0 = β / (μ + 𝜸) ≅ 2.7

-  we set μ very high (with respect to a pure demography)here to illustrate endemic equilibrium in general 
-  on the other hand, in reality, demography is not the only reason for endemic states anyway



Direction field of the model* equations brings yet-another viewpoint

i(t)

s(t)

short-term simple 
epidemic outbreak

long-term equilibrium 
disease-free 

R0 < 1

long-term equilibrium 
endemic 
R0 > 1

*) SIR and SIR with demography



UK-Style Equilibrium and One More Thing to Add

[https://coronavirus.data.gov.uk]

https://coronavirus.data.gov.uk


Anti-Epidemic Controls Simulation (for whatever purpose)

S I R
β 𝜸

disease model

*) Note the SEIR model is just an example

E
ε Observables

Risk IndicatorsParameters Feedback
estimations based 
on an independent 

model

corresponds to 
the countermeasures 

to be applied Anti-Epidemic Control

Initial Parameters 
Ansatz



Consider This Control Chain

epidemic code → the pandemic → the government → the economics



How Much Can We Trust the Models?

• Not much when a deliberate manipulation is under question 

• There are two principal vulnerabilities allowing for “anti-epidemic take over” 

- invertibility, we can find a calibration for any physically plausible epidemic 
forecast 

- reversibility, we can track this calibration back in time to see how to 
manipulate contemporary statistical data to get the desired forecast 

• Assuming we can predict the governmental reaction on the forecast, we could 
control the state this way
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