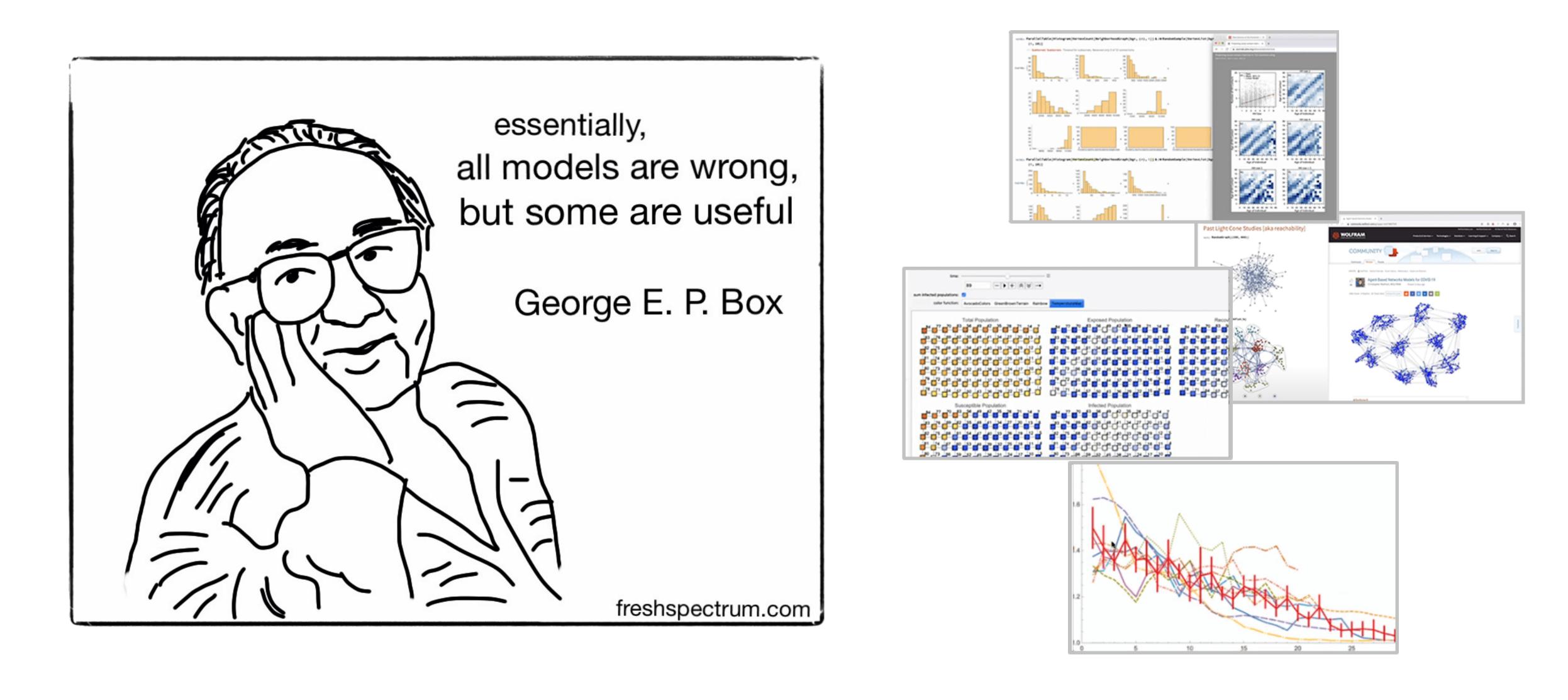
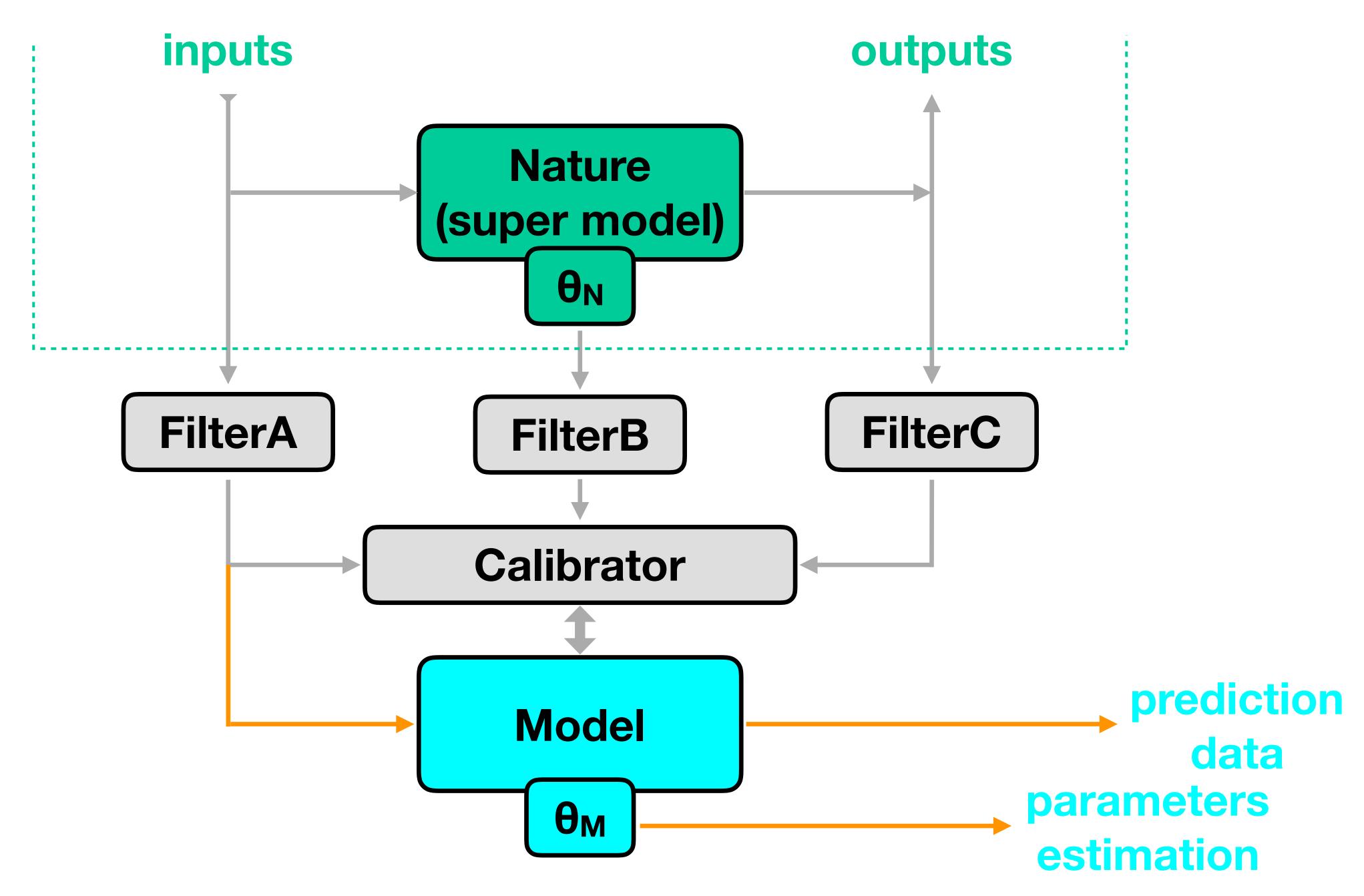
Mathematical Epidemiology - Compartmental Models Essentials Lecture series at Faculty of Mathematics and Physics, CUNI in Prague

Tomáš Rosa, Ph.D.

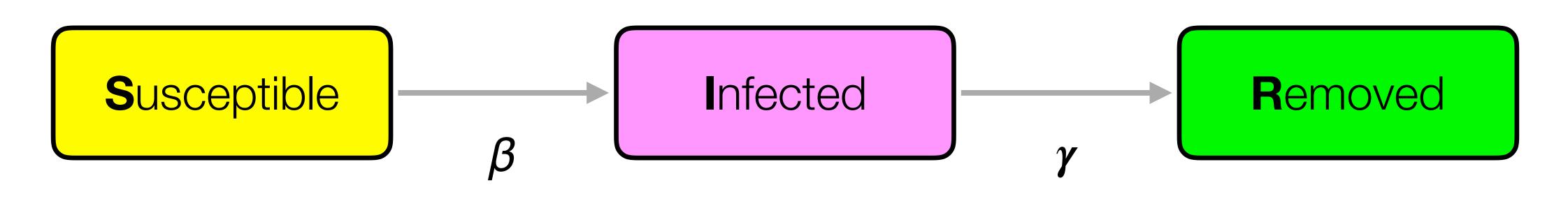
Head of Cryptology and Biometrics Competence Centre of Raiffeisen BANK International in Prague

Have you said "modelling"?

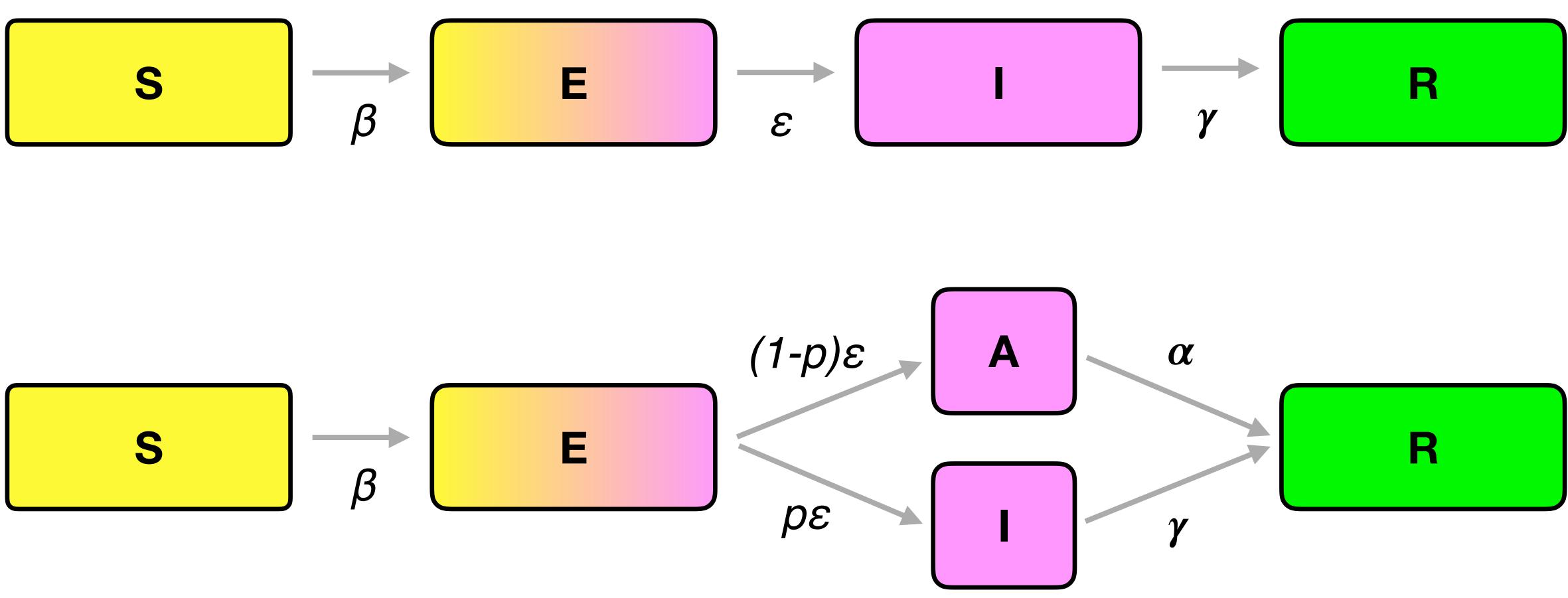


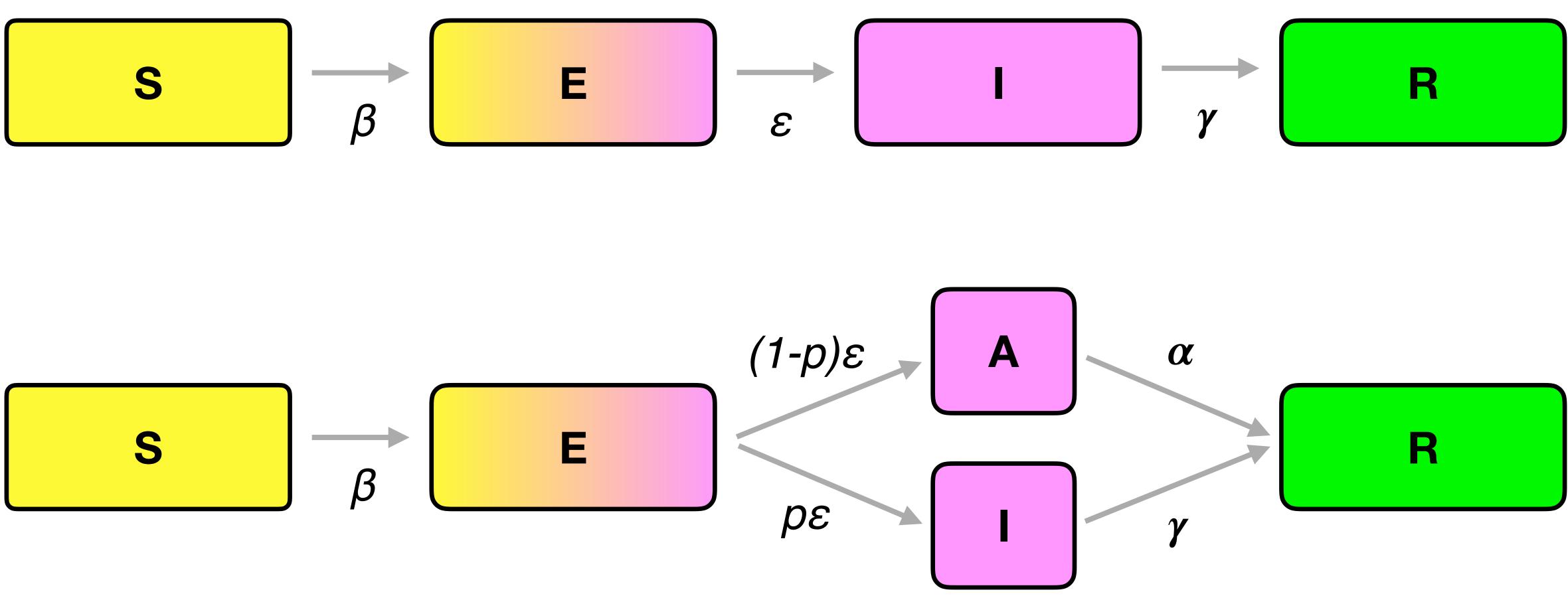


SIR Compartmental Epidemic Model - based on Kermack-McKendrick theory since 1927

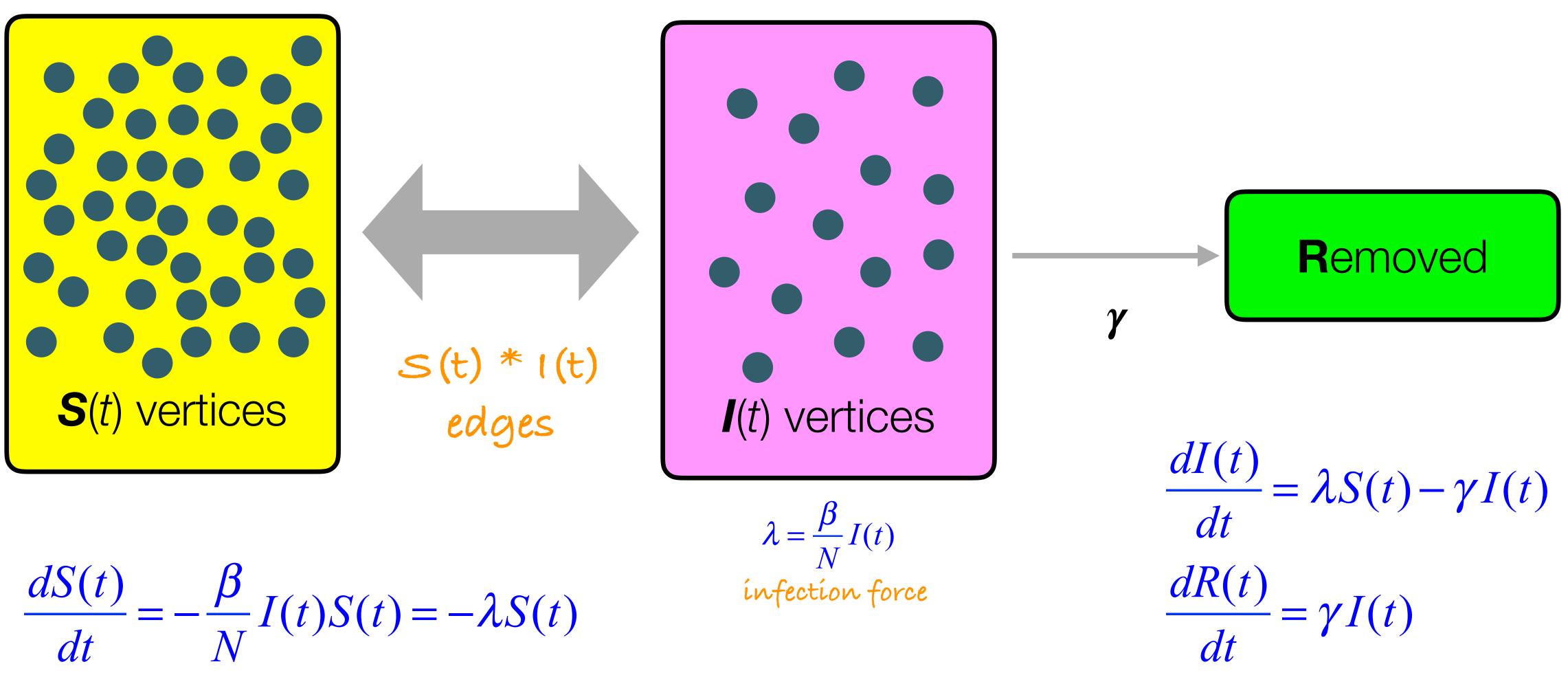


Towards COVID-19 Quantitative Realities - SEIR and SEAIR

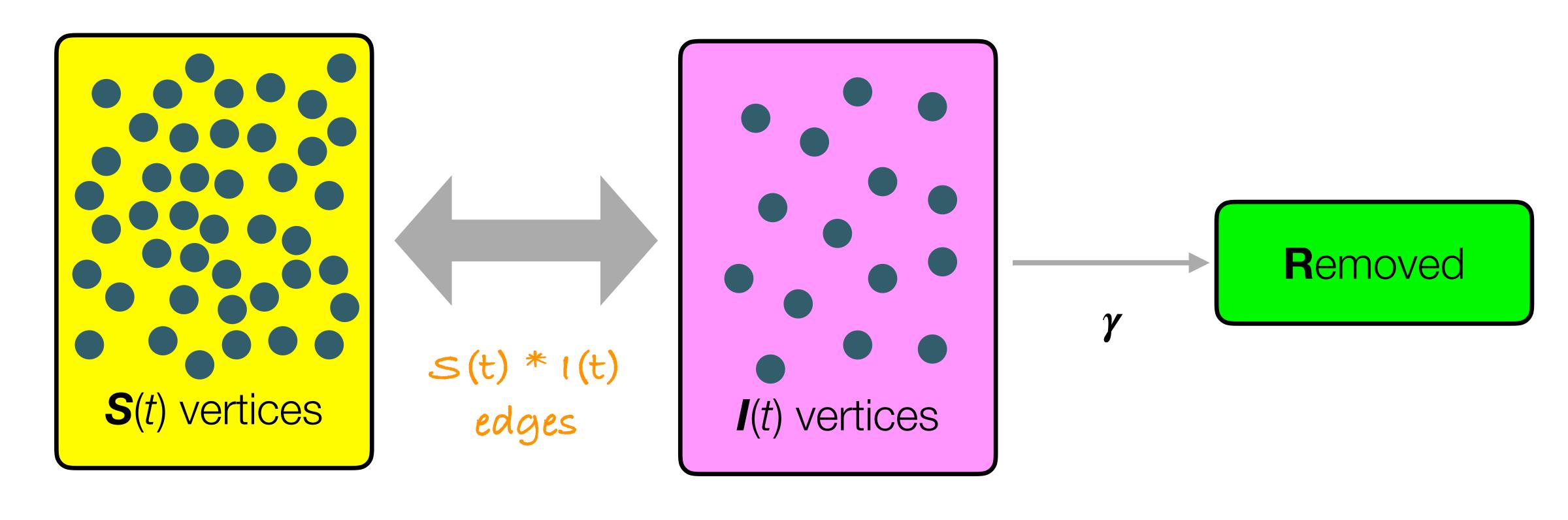




SIR Compartmental Epidemic Model - zooming on the mass action mechanism



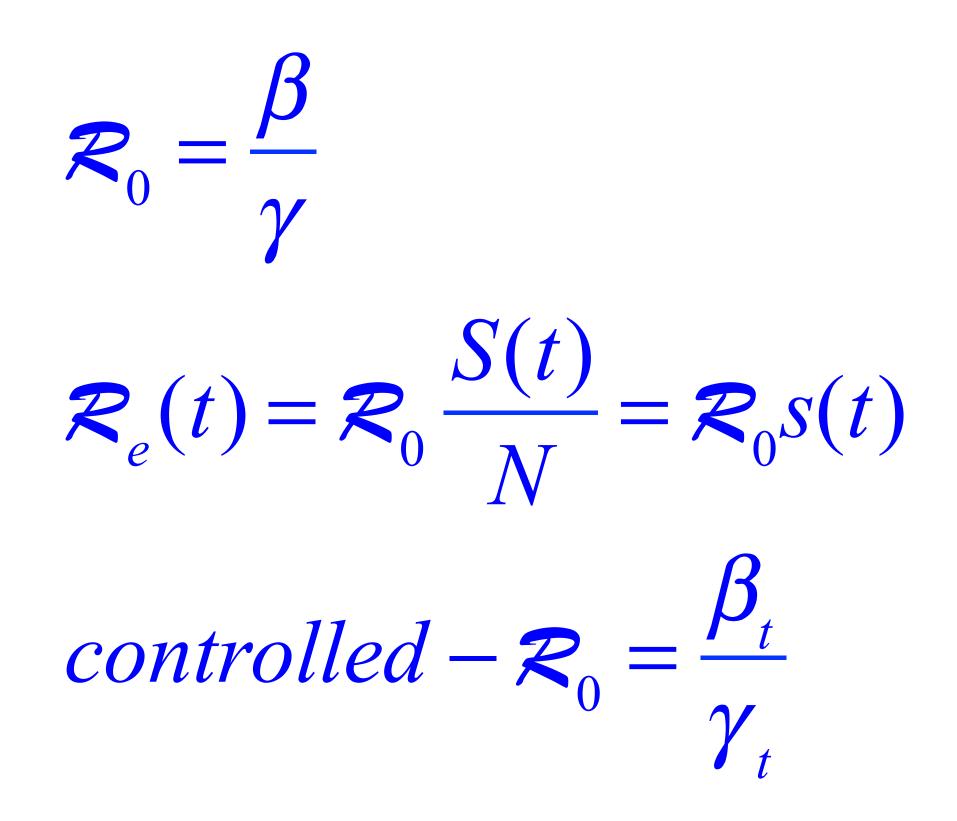
SIR Compartmental Epidemic Model - zooming on the mass action mechanism



 $-\frac{\gamma \cdot \mathcal{R}_0 \cdot season(t) \cdot control(t)}{S(t)I(t)} = -\gamma R_e(t)I(t)$ dS(t) =Ndt $\mathcal{R}_0 = \frac{\beta}{\gamma}$ Re(t) stands for the effective reproduction number

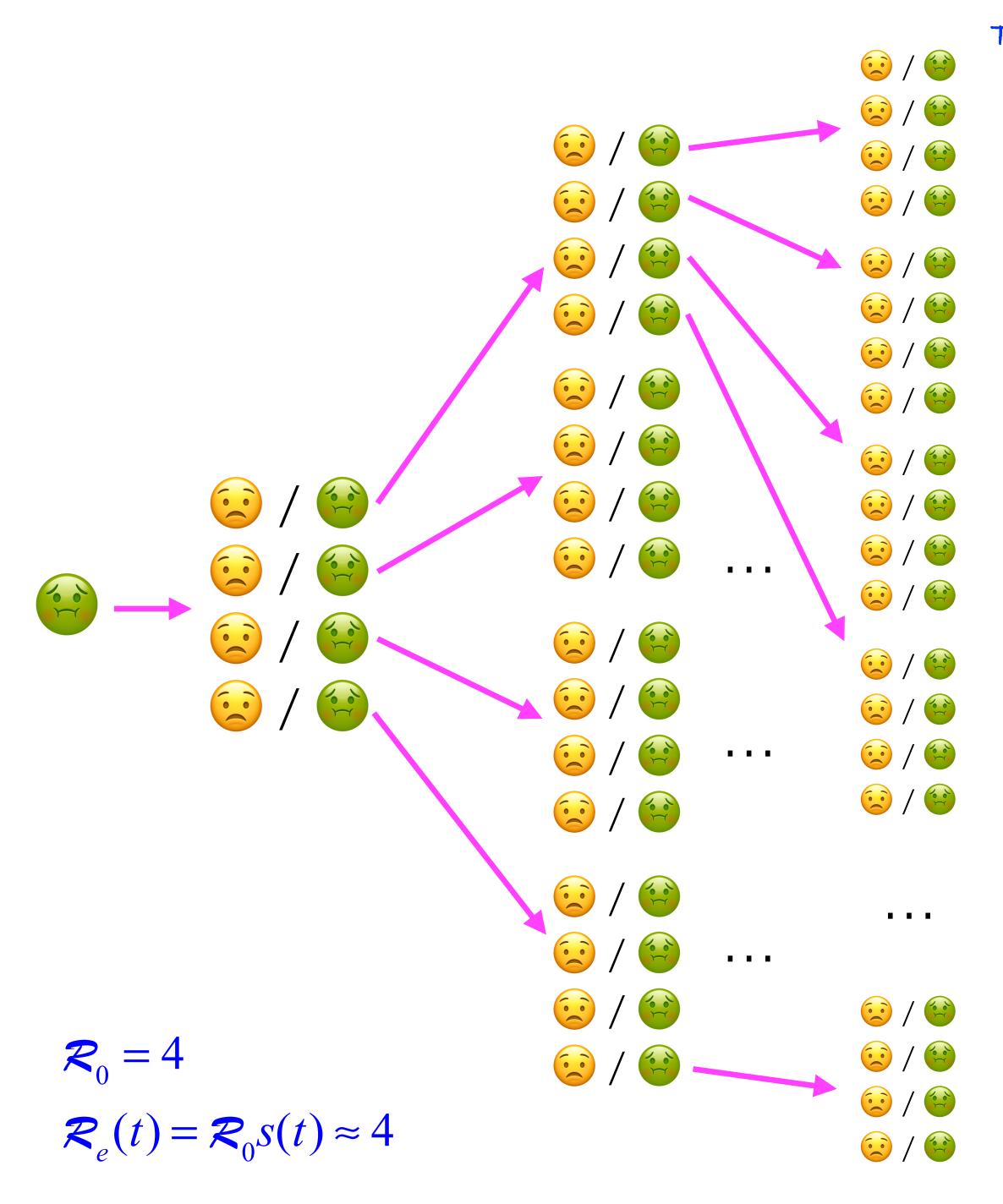
$$t) \quad \frac{dI(t)}{dt} = \gamma \left(\frac{\mathcal{R}_0 \cdot season(t) \cdot control(t)}{N} S(t) - 1\right) I(t) = \gamma (\mathcal{R}_e(t) - 1) I(t) I(t) = \gamma (\mathcal{R}_e(t) - 1) I(t) I(t) = \gamma (\mathcal$$

All Those "R"s

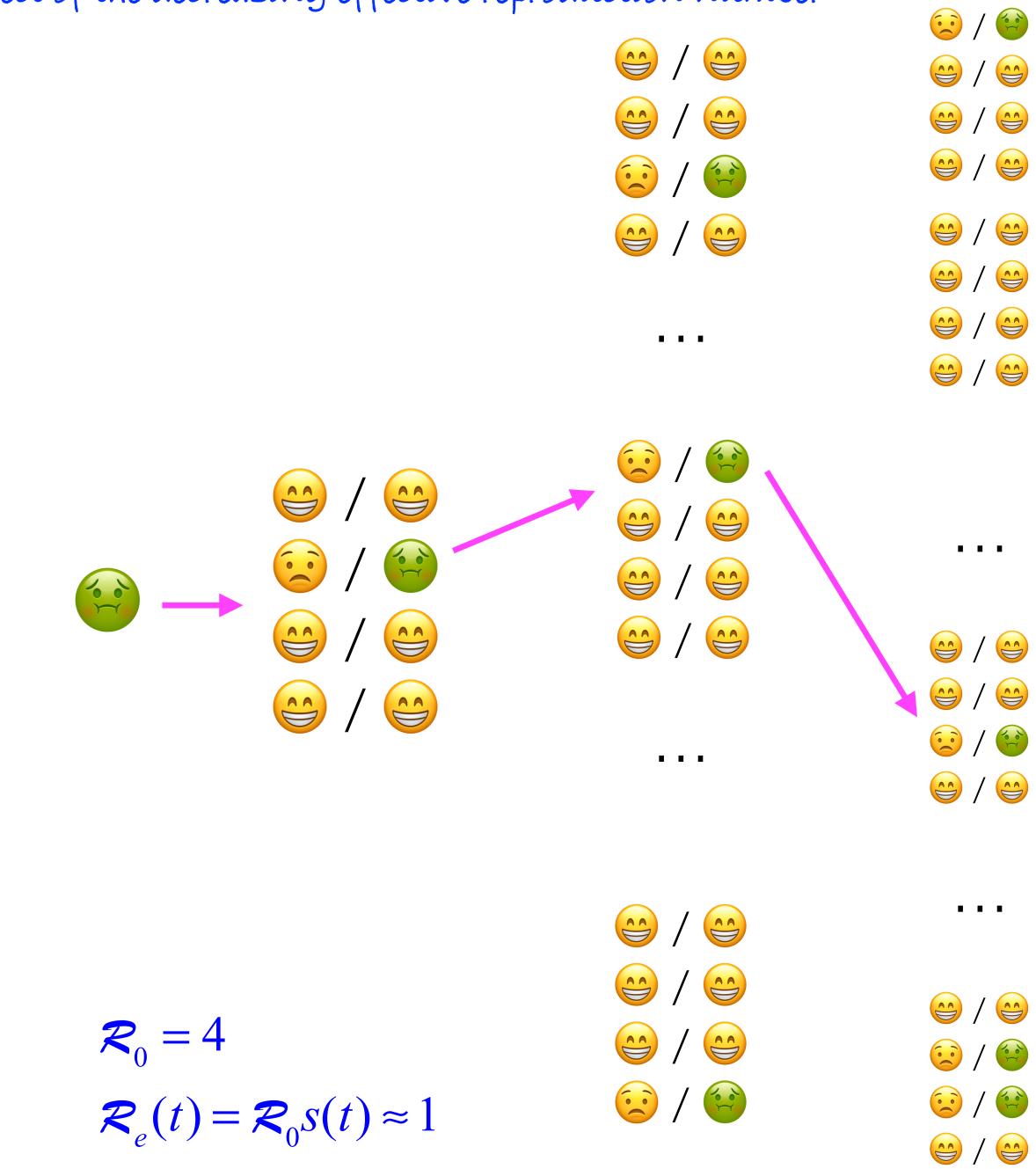


*) In this particular model

- In general, the average number of people one infectious individual infects under particular circumstances.
- Basic reproduction number \mathbf{R}_0
 - inherent model constant, describes important qualitative aspects, e.g. equilibria and their stability
- Effective reproduction number $\mathbf{R}_{e}(t)$
 - what we observe in daily experience
- Controlled reproduction number $\mathbf{R}_{0,t}$
 - what we aim for with our interventions



The effect of the decreasing effective reproduction number



Ordinary Differential Equations - What do they say here?

$$X(t + \Delta t) = X(t) + [\Lambda + \alpha X(t) + \beta X]$$
$$\frac{X(t + \Delta t) - X(t)}{\Delta t} = \Lambda + \alpha X(t) + \beta X$$
$$\lim_{\Delta t \to 0} \frac{X(t + \Delta t) - X(t)}{\Delta t} = \frac{dX(t)}{dt}$$
$$\frac{dX(t)}{dt} = \Lambda + \alpha X(t) + \beta X(t)Y(t)$$

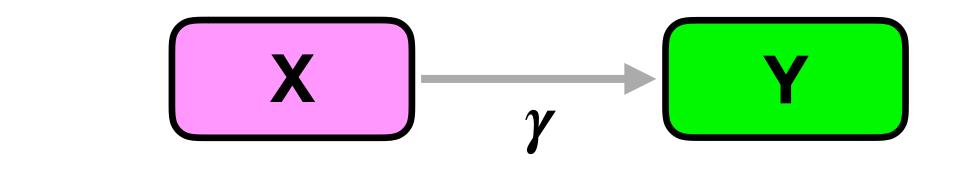
 $Y(t)Y(t)]\Delta t$ Y(t)Y(t)

- General form of ODE as used in many deterministic models of biological processes
 - incorporates various kinds of growth/ decrease action and handles the infinitesimal time steps correctly
 - Λ is an *instantaneous* **absolute** rate of change of a "degree-zero" growth/decrease process
 - α is an instantaneous **relative** rate of change of a "degree-one" growth/decrease process
 - β analogous to α , this time for a **mass** action ("degree-two") growth/decrease process

Understanding (Isolated) Spontaneous Flow

For an illustration, let us have $\frac{dX(t)}{dt} = -\gamma X(t) \text{ and } \frac{dY(t)}{dt} = \gamma X(t)$

- We have two connected population decrease/growth sub-models
 - the solution is easy to find analytically



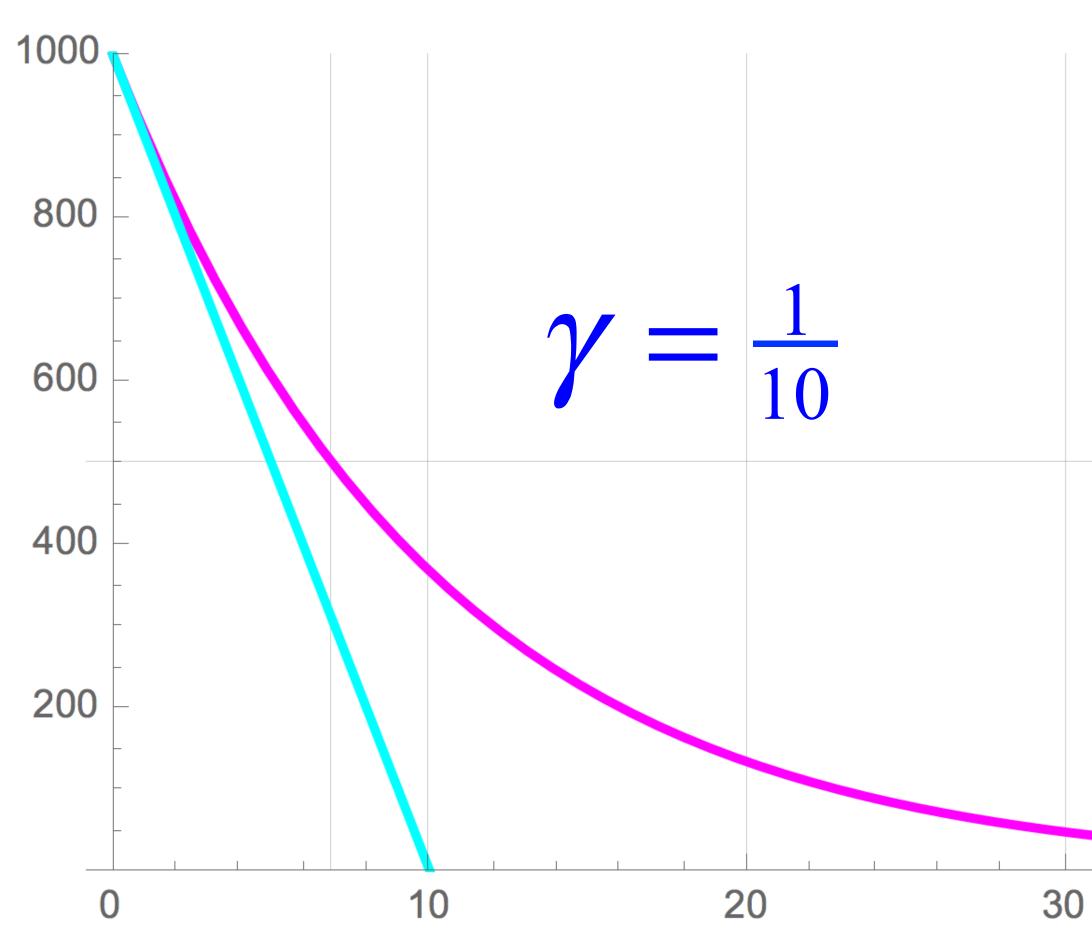
Be careful the constant relative rate assumption is helpful, but it is just an approximation

- this is in turn equivalent to the exponential waiting time distribution, as noted below

Analytical Solution of (Isolated) Spontaneous Flow

- Having fitted the initial conditions (X_0 , Y_0) and γ , we can **run the model back and forth** •
 - the initial conditions can be further given for any time instant, not just in t = 0
- This is an example of deterministic models reversibility which is in turn very interesting in itself
 - sure, be careful about the interpretation of the results, e.g. What would y(t) < 0 remind us?

Cautionary Note: Exponential vs Linear Decrease - exponential decrease speed also decreases exponentially

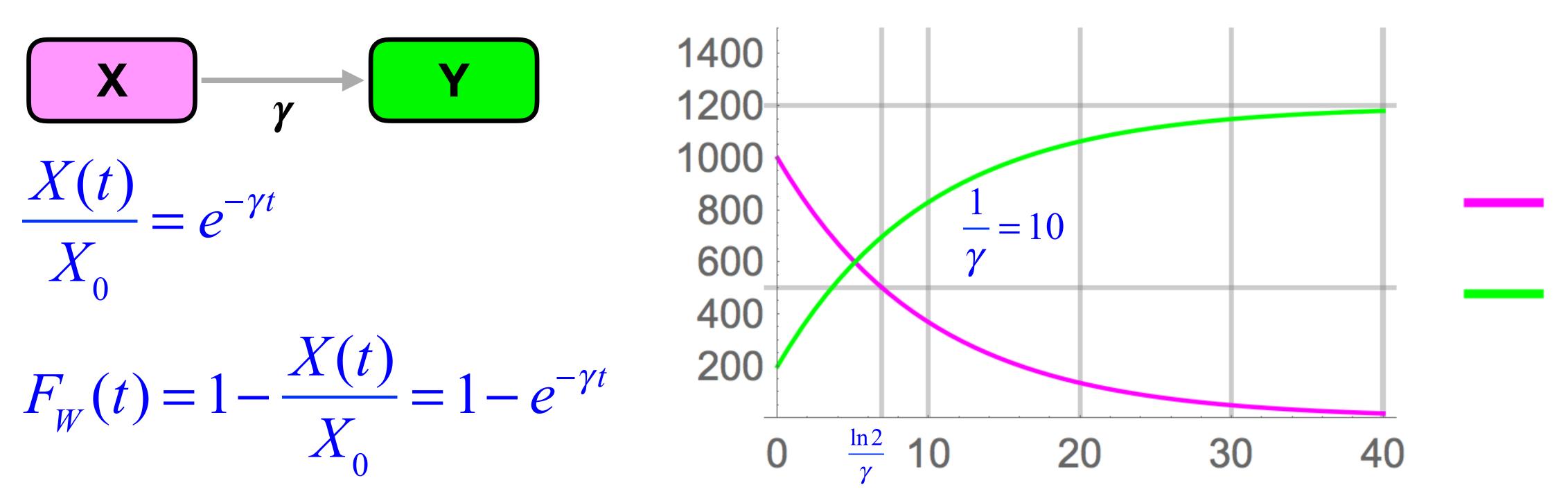


time	exp	lin
0	1000	1000
1	905	900
2	819	800
3	741	700
4	670	600
5	607	500
6	549	400
7	497	300
8	450	200
9	407	100
10	368	0

)

40

Fitting the γ Rate



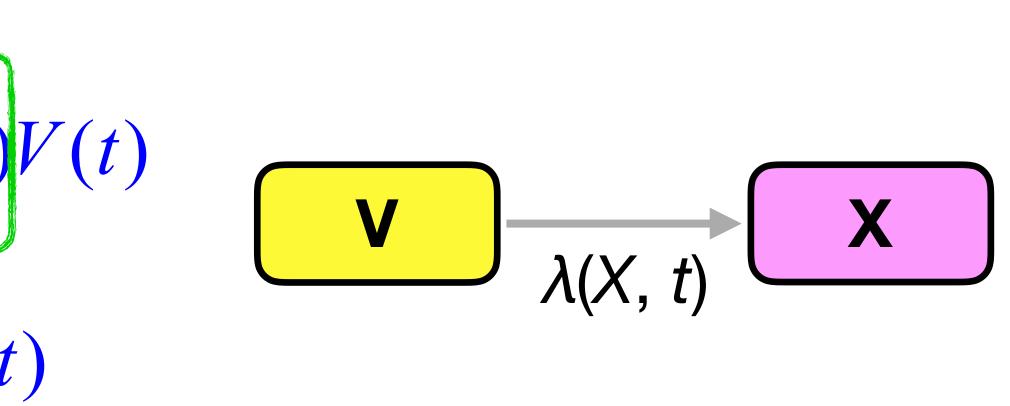
- member of X leaves this compartment
 - this is the exponential distribution with $\mathbf{E}[W] = 1/\gamma$ and median $m[W] = (\ln 2)/\gamma$
- · So, we can fit the rate γ as the reciprocal of the (estimated) mean time of staying in the compartment X

• $F_W(t)$ is then the cumulative distribution function of a random variable W denoting the waiting time until a randomly chosen

Understanding (Isolated) Induced Flow

$$\frac{dV(t)}{dt} = \left[-\lambda(X,t)V(t)\right] = \left[-\frac{\beta}{N}X(t)\right]$$
$$\frac{dX(t)}{dt} = \lambda(X,t)V(t) = \frac{\beta}{N}X(t)V(t)$$

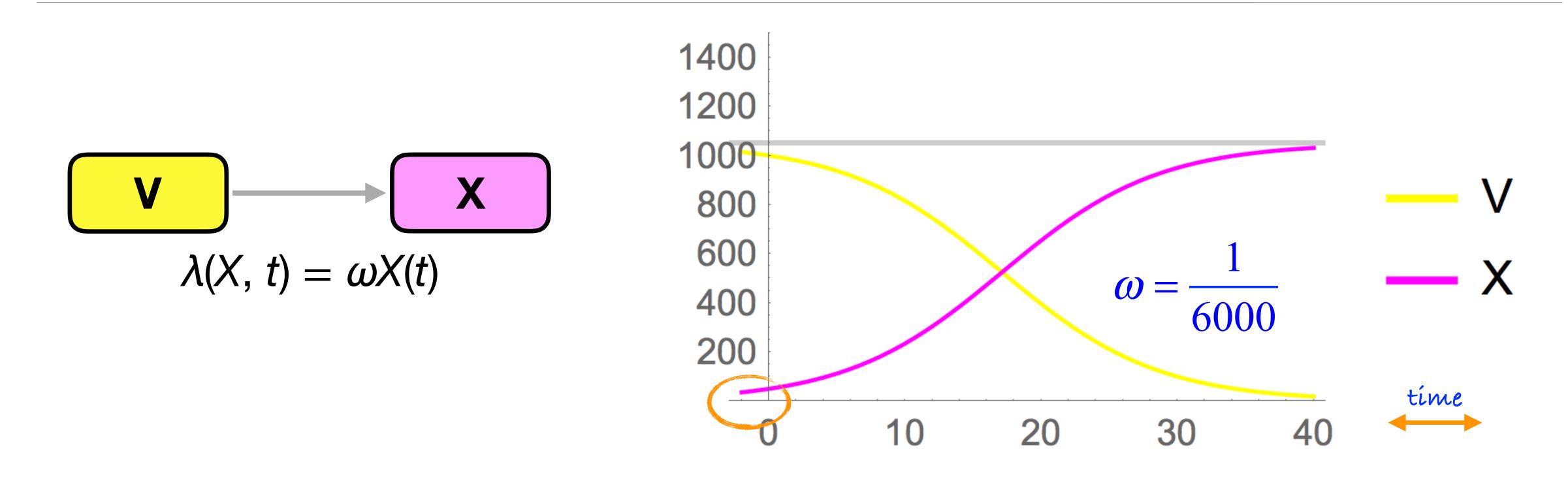
- In epidemiology, $\lambda(X, t)$ is also called *infection force* •
 - it brings a nonlinear term invoking *the law of mass action* mechanism —
- (assuming ideal mixing) $K_{S(t),l(t)}$ of the population network in the given time instant



• Note X(t)V(t) is corresponds to the number of possibly infective edges in the complete bipartite contact graph

- β / N is the probabilistic instantaneous relative rate of the infection spreading through these edges

Isolated Mass Action Solution Example

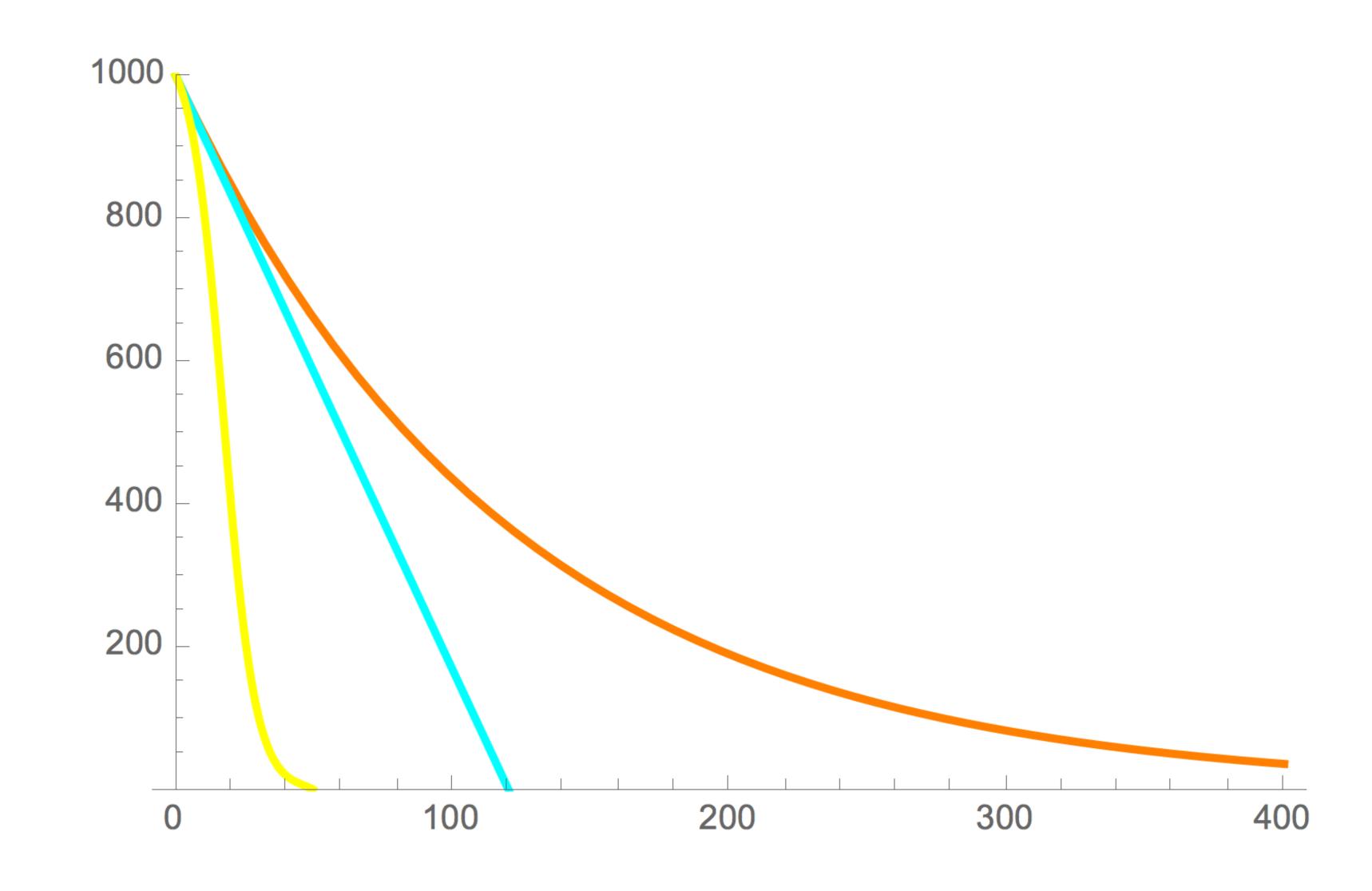


- - leading to the logistic equation / curve -

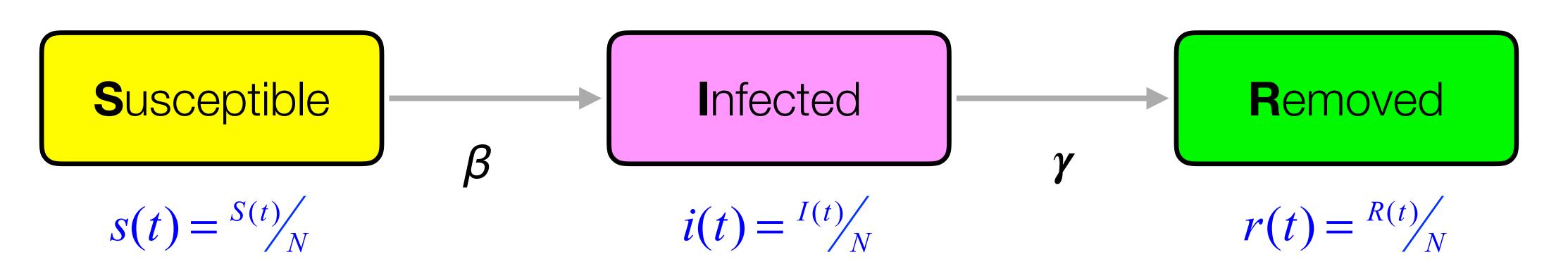
• Solution found numerically, though this particular one can still be found analytically, noting X(t) = N - V(t)

- contains not so surprising (almost) exponential episodes followed by somewhat relaxed regions

Exponential, Linear, and Mass Action Slopes Comparison



Finalising the Picture and Going Dimensionless



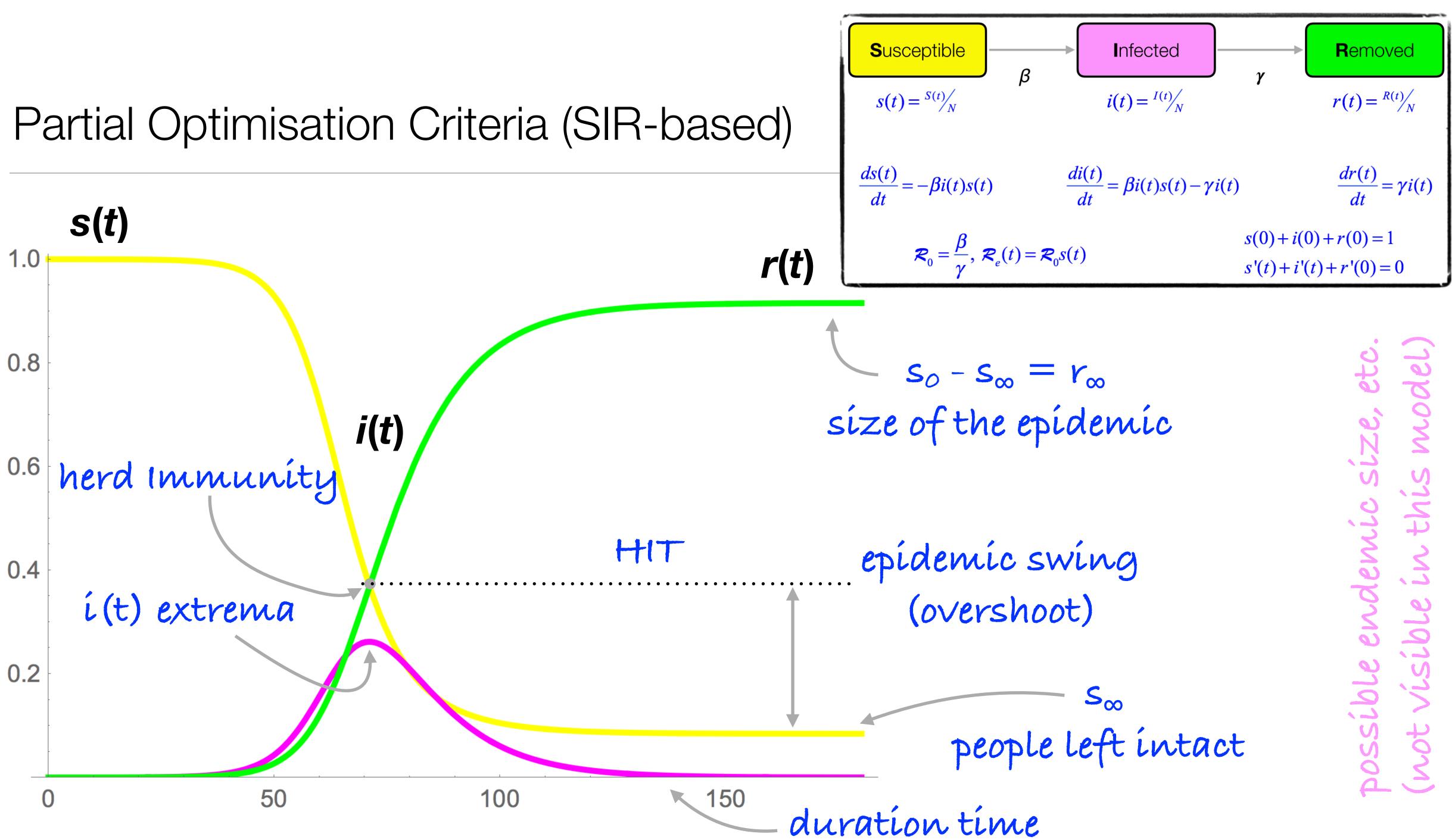
 $\frac{ds(t)}{dt} = -\beta i(t)s(t)$

 $\mathcal{R}_0 = \frac{\beta}{\gamma}, \ \mathcal{R}_e(t) = \mathcal{R}_0 s(t)$

 $\frac{di(t)}{dt} = \beta i(t)s(t) - \gamma i(t)$

 $\frac{dr(t)}{dt} = \gamma i(t)$

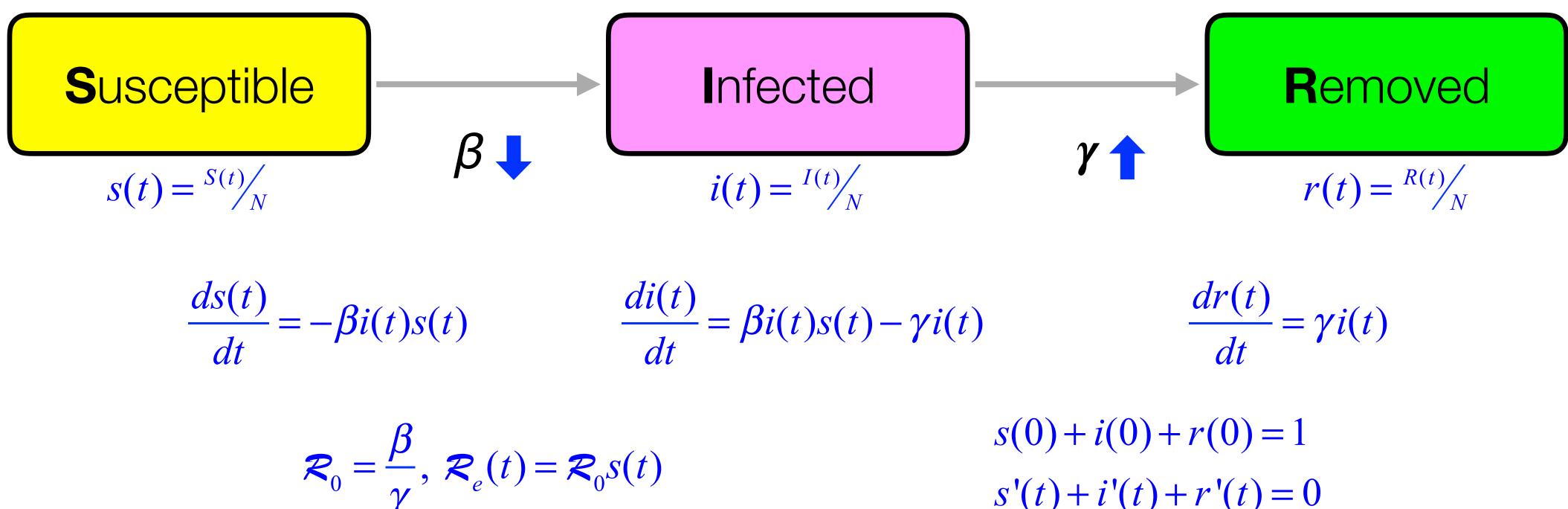
s(0) + i(0) + r(0) = 1s'(t) + i'(t) + r'(0) = 0



Anti-Epidemic Interventions

transmission rate intervention 4

- moderating contact rate
- decreasing infection probability



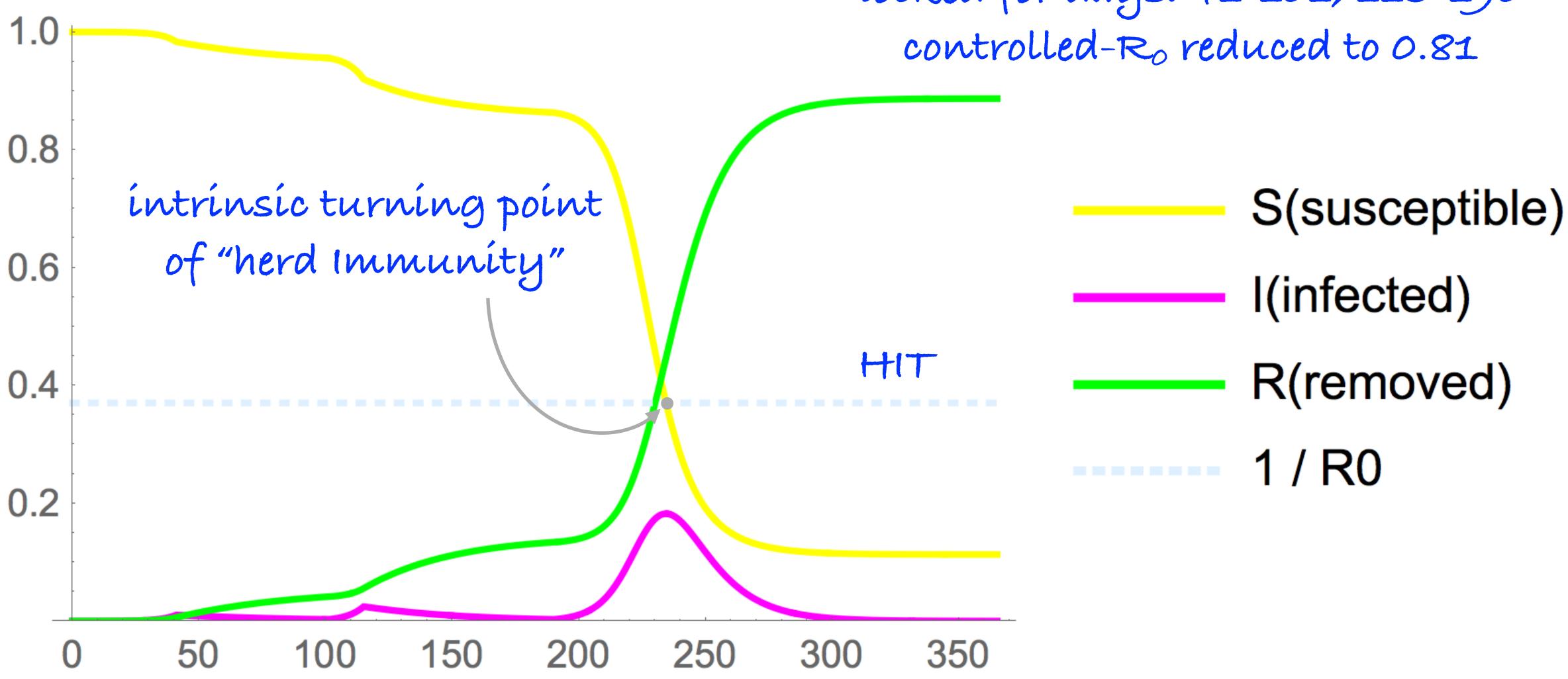
removal rate intervention 1

- broad testing
- contact tracing
- vaccination

$$\frac{dr(t)}{dt} = \gamma i(t)$$

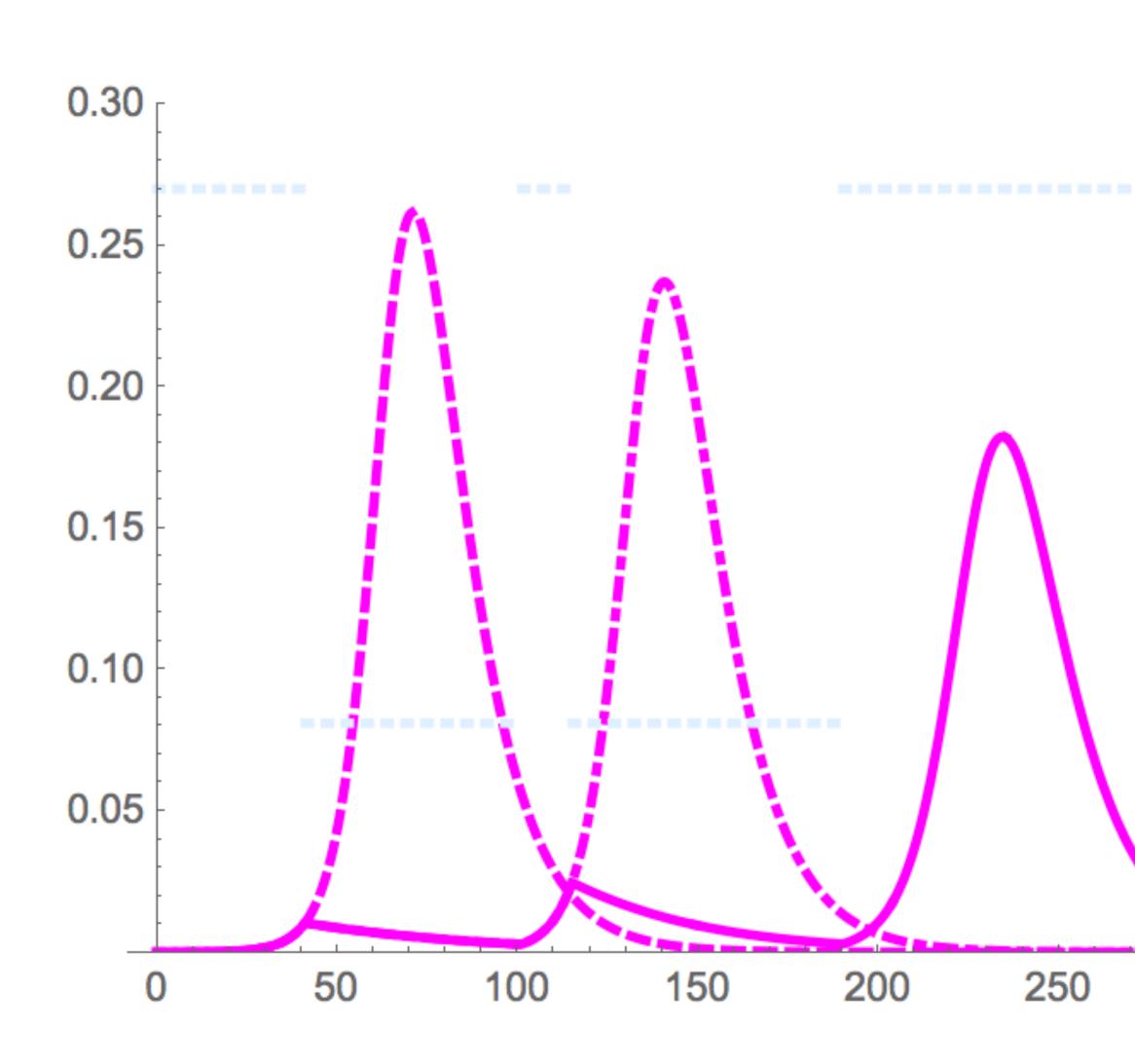
s'(t) + i'(t) + r'(t) = 0

Example: Qualitative Study of Two Ideal Consecutive Lockdowns



locked for days: 41-101, 115-190

Example: Infectious Compartment Comparative Close-Up



I(infected)-free-run
I(infected)-one-lock
I(infected)-two-locks
"R0(t)" / 10

350

300

Real-World Lockdown Serious Modelling Example (UK)

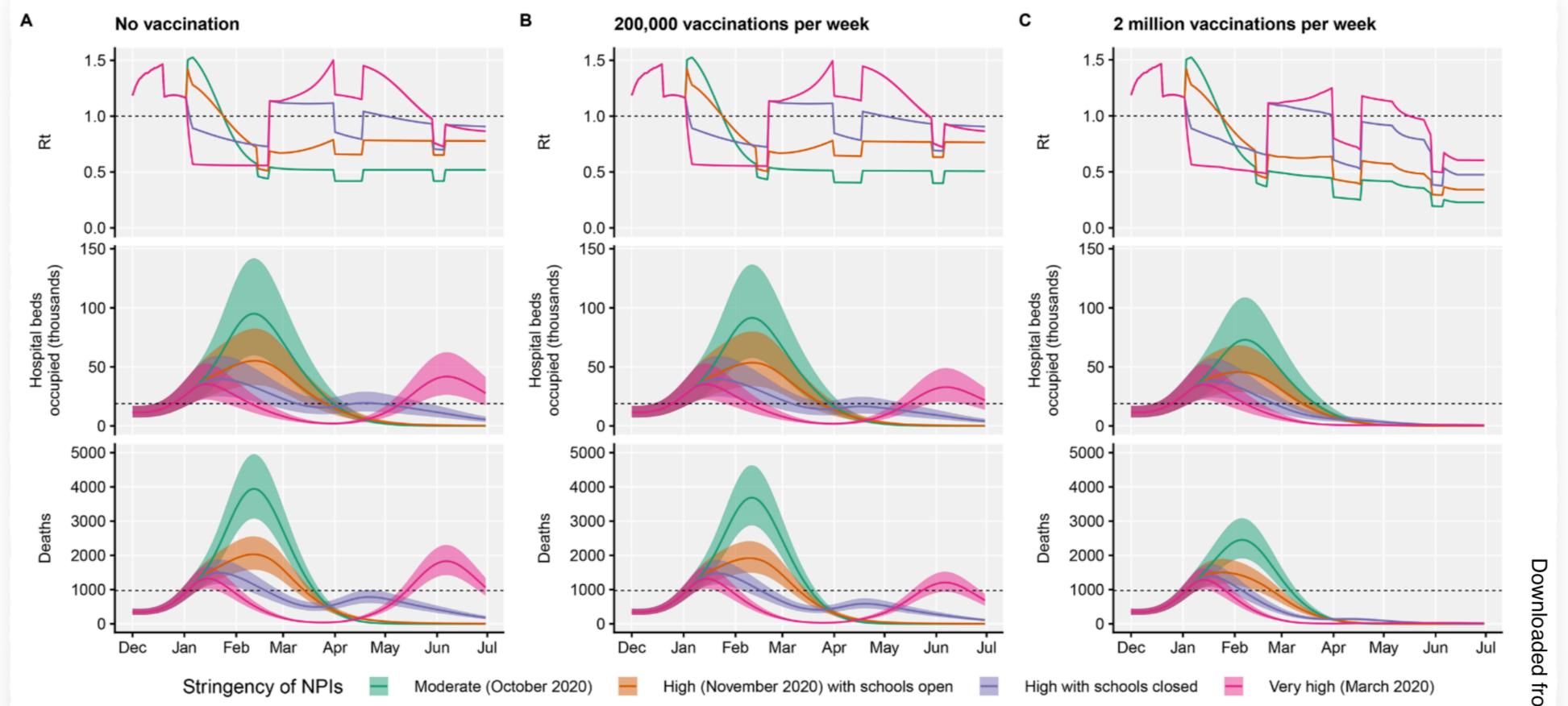
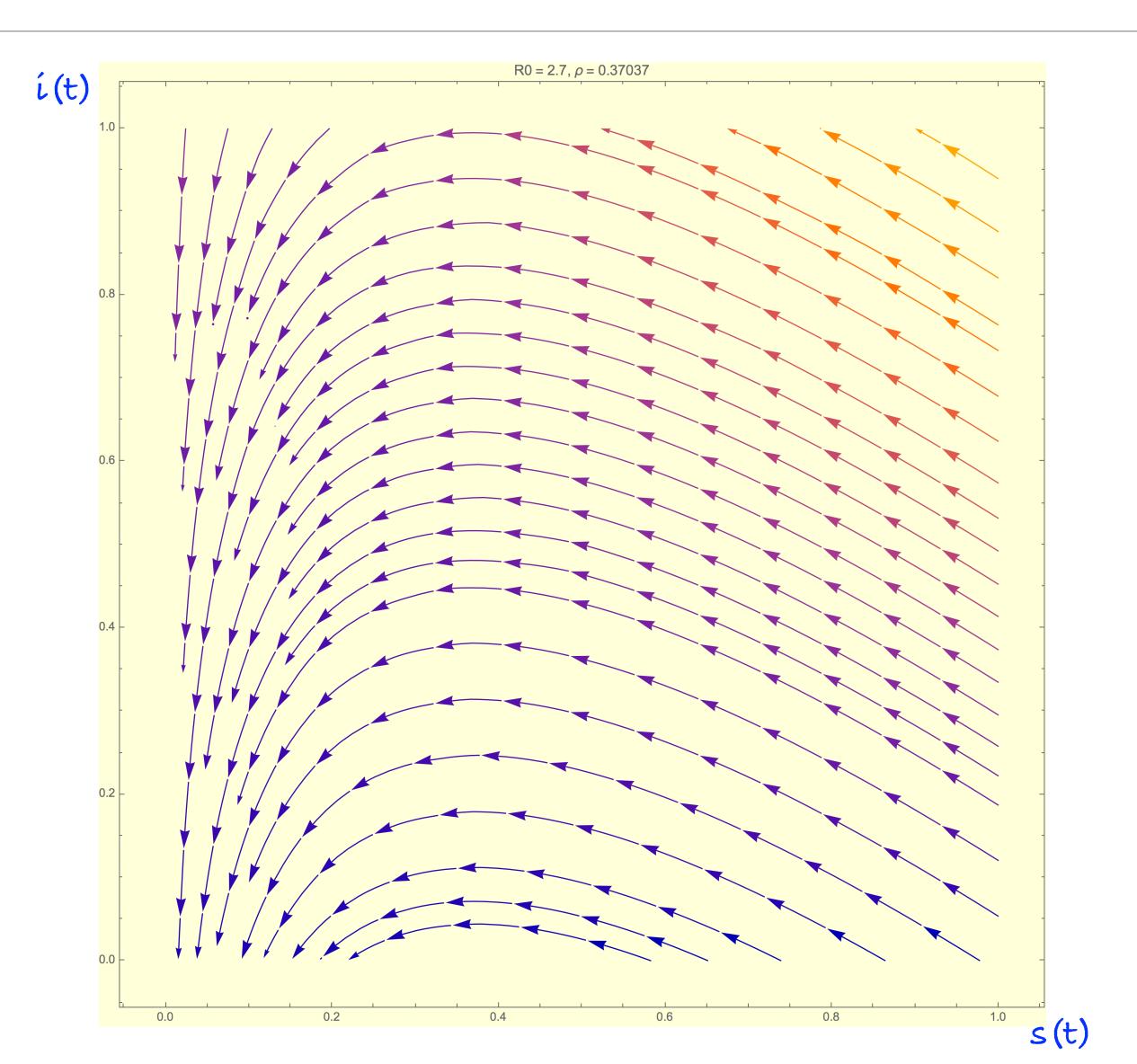
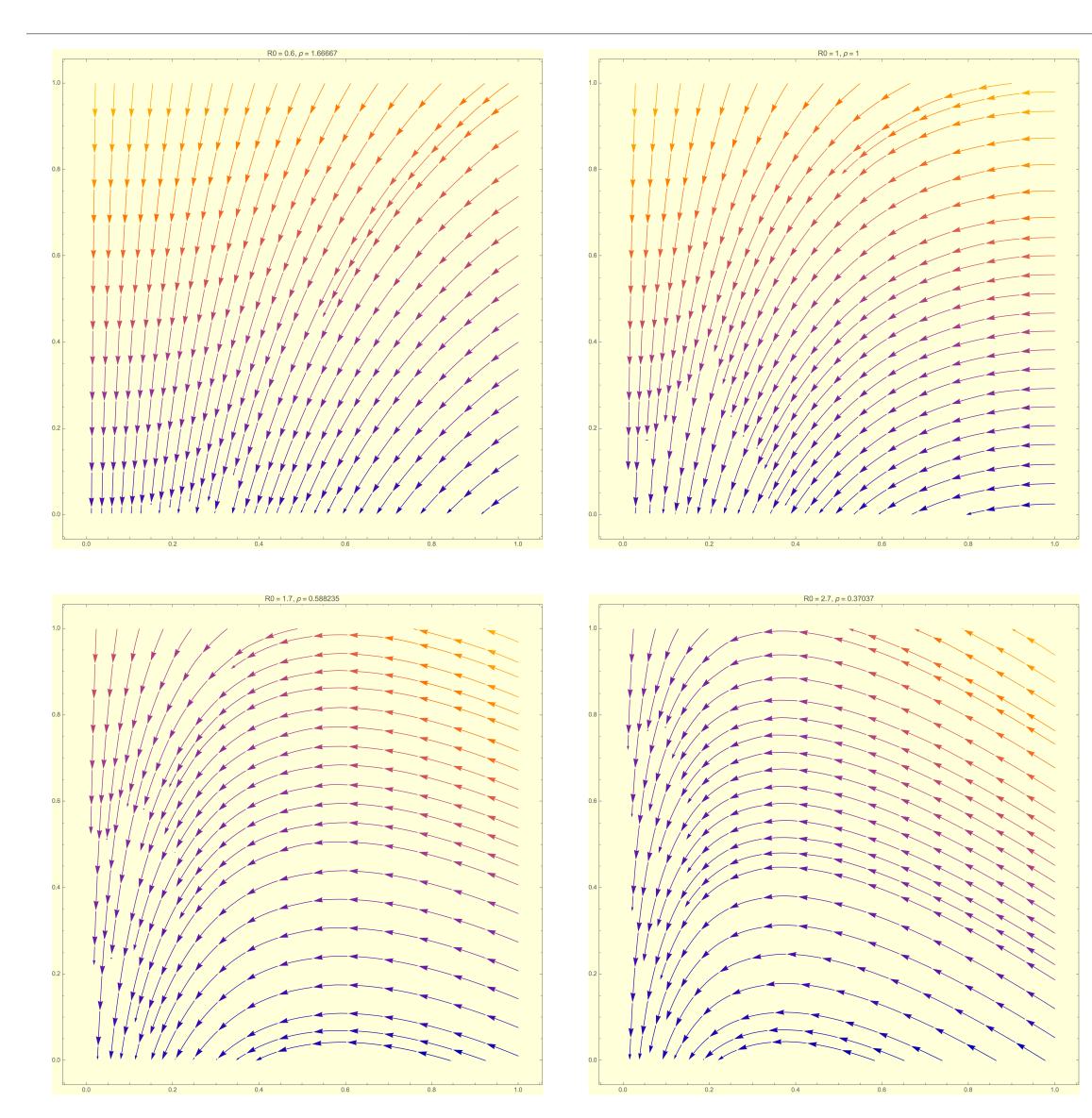


Fig. 4. Projections of epidemic dynamics under different control measures. We compare four alternative scenarios for non-pharmaceutical interventions from 1 January 2021: (i) mobility returning to levels observed during relatively moderate restrictions in early October 2020; (ii) mobility as observed during the second lockdown in England in November 2020, then gradually returning to October 2020 levels from 1 March to 1 April 2021, with schools open; (iii) as (ii), but with school

Epidemic Phase Portrait (yet, another viewpoint on the epidemic)

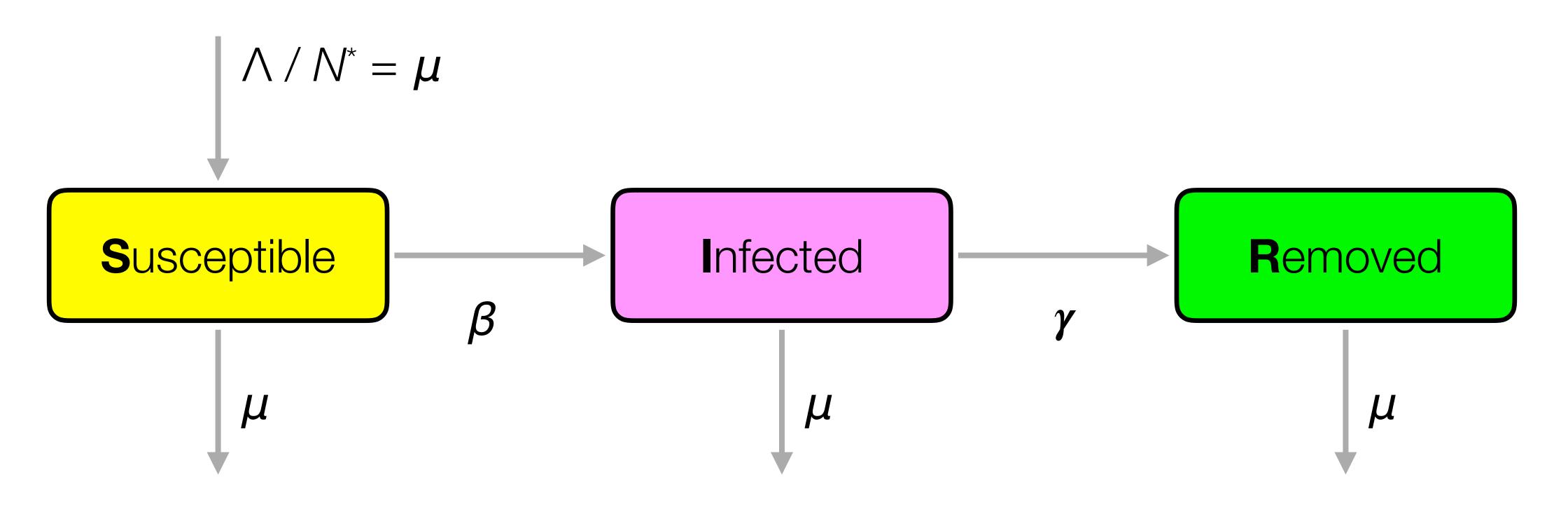


R₀ Dependency and Consequences



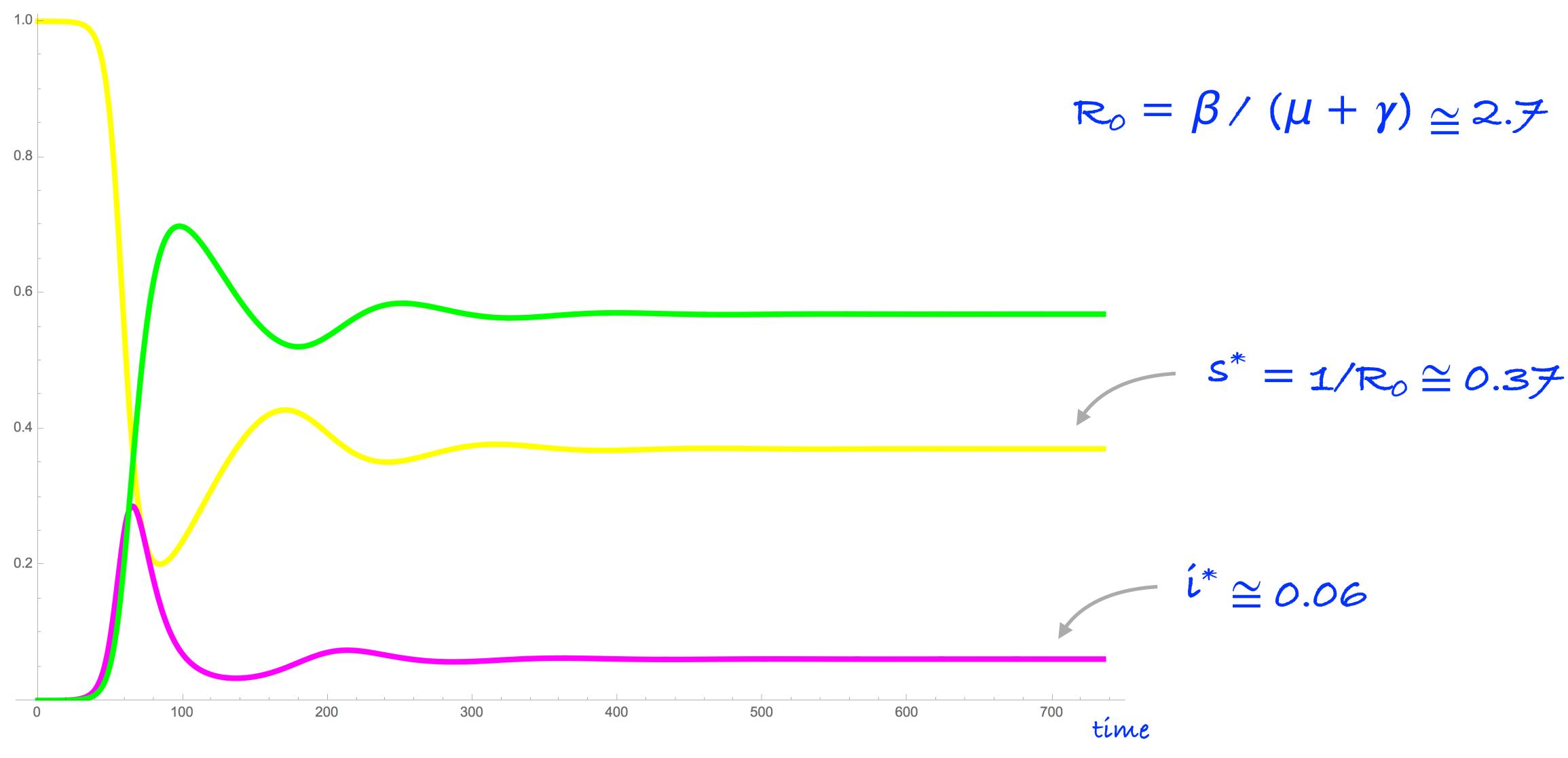
- phase field together with the herd immunity threshold ρ is fully determined by the (possibly controlled) basic reproduction number ($\rho = 1/R_0$)
- lockdowns primarily control basic **R**, this is actually swapping one field for another one (back-and-forth)
- vaccination addresses the **effective R** (*in this model*), it is actually a wormhole in the unchanged field

SIR Compartmental Epidemic Model - including simple demography, now



we set µ very high (with respect to a pure demography)here to illustrate endemic equilibrium in general
 on the other hand, in reality, demography is not the only reason for endemic states anyway

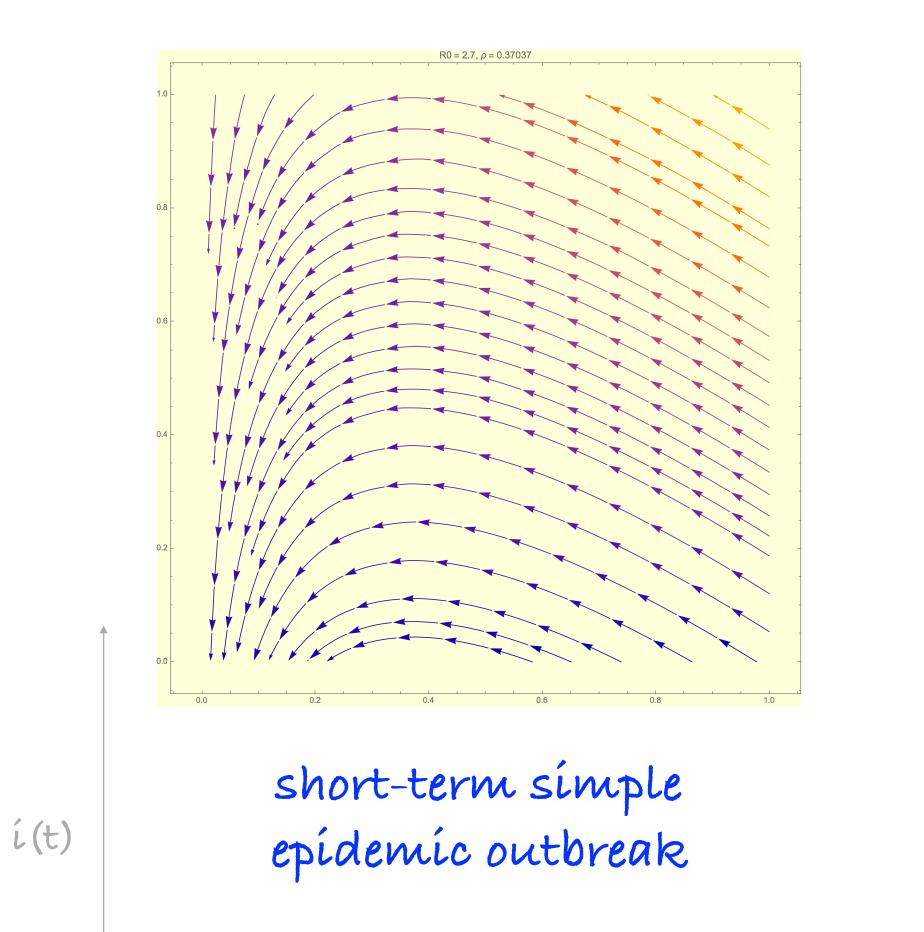
Endemic Equilibrium is Asymptotically Stable for $\mathbf{R}_0 > 1$

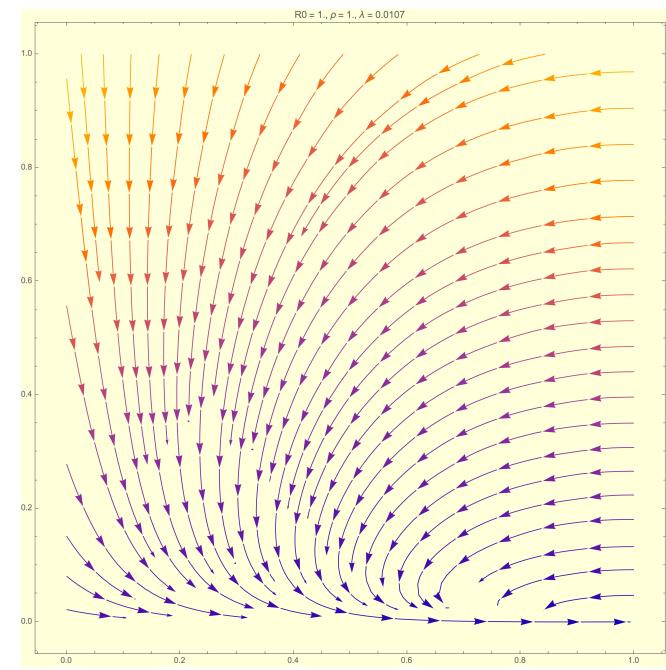


- we set μ very high (with respect to a pure demography) here to illustrate endemic equilibrium in general

- on the other hand, in reality, demography is not the only reason for endemic states anyway

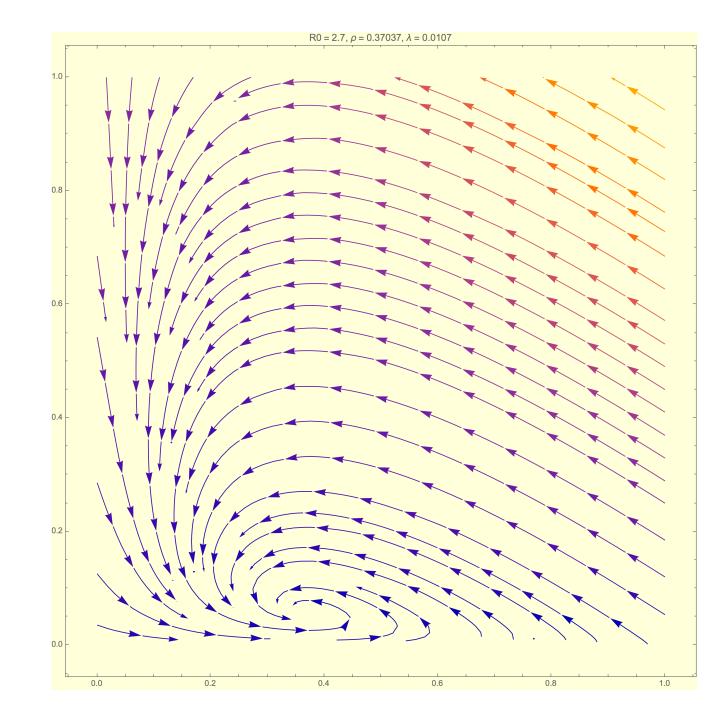
Direction field of the model* equations brings yet-another viewpoint





long-term equilibrium disease-free $R_0 < 1$

s(t)



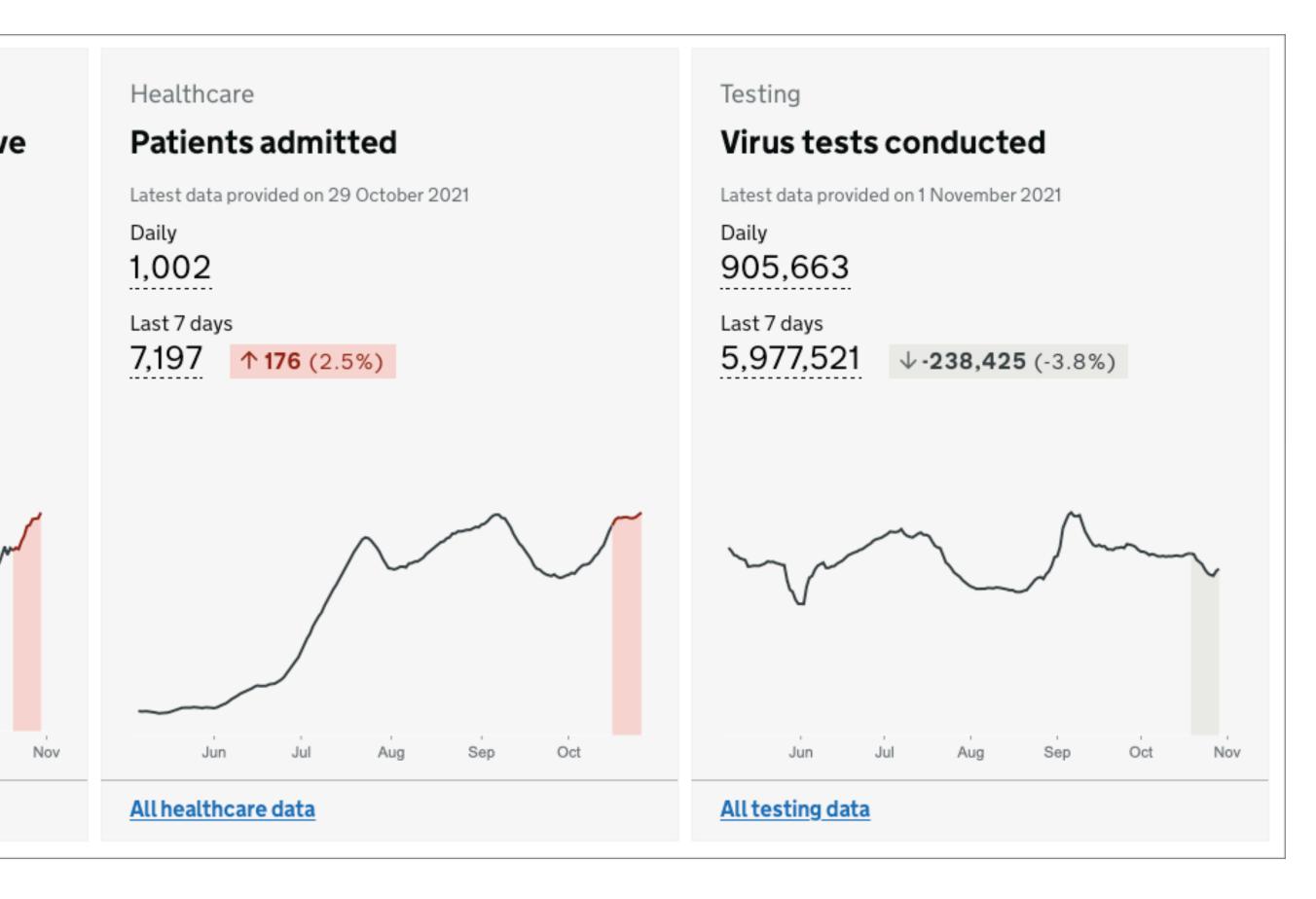
long-term equilibrium endemíc $R_0 > 1$

*) SIR and SIR with demography

UK-Style Equilibrium and One More Thing to Add

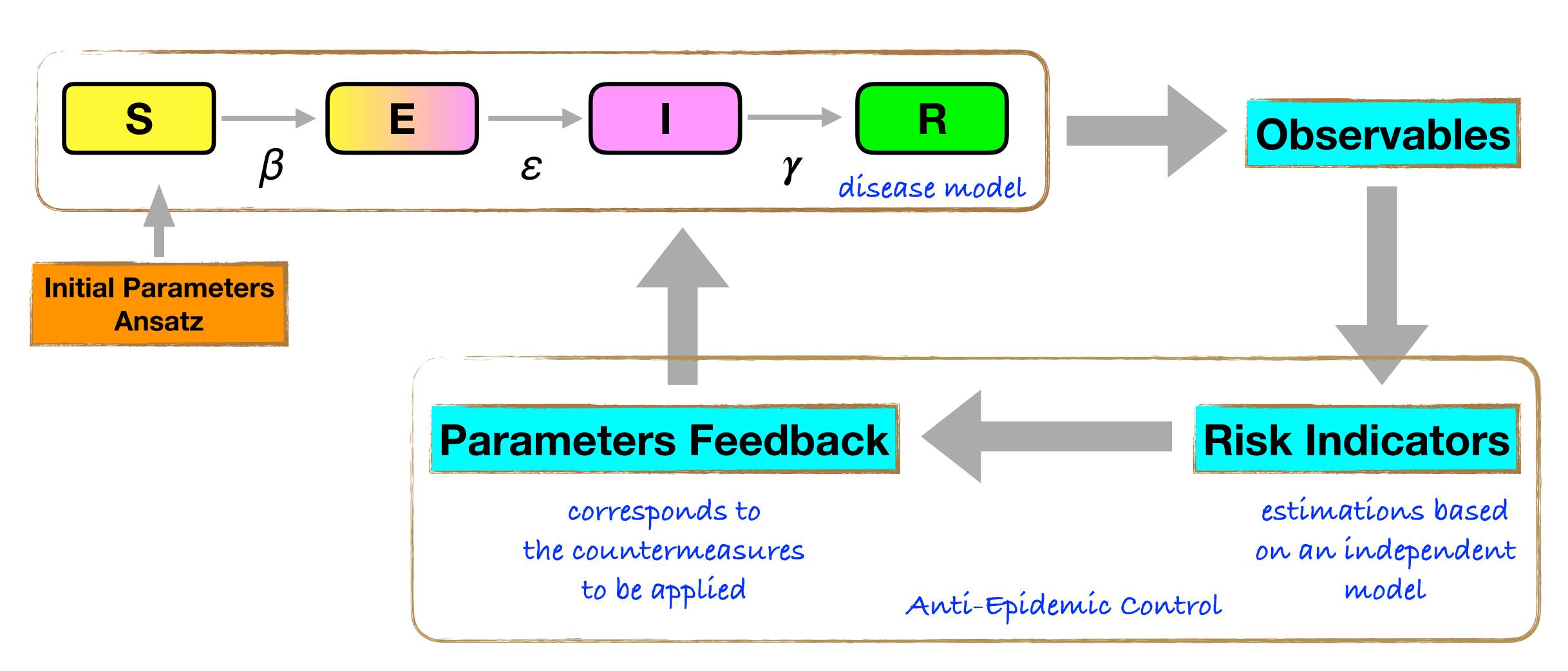
Oct

Deaths Cases People tested positive Deaths within 28 days of positive test Latest data provided on 2 November 2021 Daily Latest data provided on 2 November 2021 33,865 Daily 293 Last 7 days 280,479 **↓-32,435** (-10.4%) Last 7 days **1,131 ↑ 149** (15.2%) ▶ Rate per 100,000 people: 416.9 Rate per 100,000 people: 1.5 Oct All cases data All deaths data



[https://coronavirus.data.gov.uk]

Anti-Epidemic Controls Simulation (for whatever purpose)



*) Note the SEIR model is just an example

Consider This Control Chain

epidemic code \rightarrow the pandemic \rightarrow the government \rightarrow the economics

How Much Can We Trust the Models?

- Not much when a deliberate manipulation is under question
- There are two principal vulnerabilities allowing for "anti-epidemic take over"
 - invertibility, we can find a calibration for any physically plausible epidemic forecast
 - reversibility, we can track this calibration back in time to see how to manipulate contemporary statistical data to get the desired forecast
- Assuming we can predict the governmental reaction on the forecast, we could control the state this way

References and Further Reading

(1) Bjornstad, O.-N.: Epidemics - Models and Data Using R, Springer, 2018

- Applied Mathematics, Vol. 69, Springer, 2019
- to Approximate Models, Interdisciplinary Applied Mathematics, Vol. 46, Springer, 2017
- (5) Martcheva, M.: An Introduction to Mathematical Epidemiology, Texts in Applied Mathematics, Vol. 61, Springer, 2015
- Press, 2010

(2) Brauer, F., Castillo-Chavez, C., and Feng, Z.: Mathematical Models in Epidemiology, Texts in

(3) Kiss, I.-Z., Miller, J.-C., and Simon, P.-L.: *Mathematics of Epidemics on Networks – From Exact*

(4) Li, M.-Y.: An Introduction to Mathematical Modelling of Infectious Diseases, Springer, 2018

(6) Vynnycky, E. and White, R.-G.: An Introduction to Infectious Disease Modelling, Oxford University

Revision History

- 2021/11/03: release version 1
- 2021/11/25: demographic parameters clarification, references updated