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Have you said "modelling”
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SIR Compartmental Epidemic Model
- based on Kermack-McKendrick theory since 1927
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Towards COVID-19 Quantitative Realities - SEIR and SEAIR
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SIR Compartmental Epidemic Model
- Zzooming on the mass action mechanism
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SIR Compartmental Epidemic Model
- Zzooming on the mass action mechanism

dS(t)  y-R®,-season(t)-control(t) B di(t) [ R, -season(t)-control(t)
o N SOOI =-yR (I  — —7’( N

p
Y

S(2) - 1)I(f) =Y (R, ()= 1)1(2)

R, =



All Those “R’s

controlled — R, =

*) In this particular moolel
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Infectious individual infects under particular
circumstances.

Basic reproduction number Ro

- Inherent model constant, describes import

* In general, the average number of people one

ant

qualitative aspects, e.g. equilibria and thel
stability

—ffective reproduction number Re(t)

- what we observe in daily experience

- Controlled reproduction number Ro t

- what we aim for with our interventions
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The effect of the decreasing effective reproduction number
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Ordinary Differential Equations - What do they say here?

- General form of ODE as used in many

X([ 4+ Al‘) — X(t) 1+ [A 4 OCX(t) + ﬁX(t)Y(t)]At deterministic models of biological processes
X( f+ Af) _ X( t) - incorporates various kinds of growth/

decrease action and handles the
At

— A —+ (XX(Z‘) -+ ﬁX(t)Y(t) Infinitesimal time steps correctly

- N\ IS an instantaneous absolute rate of
change of a “degree-zero” growth/decrease
Process

-« IS an instantaneous relative rate of

change of a “degree-one” growth/decrease
Process

dX(t)
dt

~

_ \‘

=A+oX (t) + ,BX (t)Y (t)

- B analogous to a, this time for a mass

action (“degree-two”) growth/decrease
Process



Understanding (Isolated) Spontaneous Flow

For an 1llustration, let us have

X _ o x(ry and 229D — oy x ()

dt dt

, LY ]

+ We have two connected population decrease/growth sub-models
- the solution Is easy to find analytically
+  Be careful the constant relative rate assumption is helpful, but it is just an approximation

- this is In turn equivalent to the exponential waiting time distribution, as noted below



Analytical Solution of (Isolated) Spontaneous Flow
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- Having fitted the initial conditions (Xo, Yo) and y, we can run the model back and forth

- the initial conditions can be further given for any time instant, not justint =0
+This iIs an example of deterministic models reversibility which is in turn very interesting in itself

- sure, be careful about the interpretation of the results, e.g. What would y(t) < O remind us?



Cautionary Note: Exponential vs Linear Decrease
- exponential decrease speed also decreases exponentially
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Fitting the y Rate
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- Fut) Is then the cumulative distribution function of a random variable /W denoting the waiting time until a randomly chosen
member of X leaves this compartment

- this is the exponential distribution with E[W] = 1/y and median m[W/] = (In 2)/y

- S0, we can fit the rate y as the reciprocal of the (estimated) mean time of staying in the compartment X



Understanding (Isolated) Induced Flow
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+ In epidemiology, A(X, t) is also called infection force
- It brings a nonlinear term invoking the law of mass action mechanism

- Note X(H)V/[t) is corresponds to the number of possibly infective edges in the complete bipartite contact graph
(@assuming ideal mixing) Ksu . of the population network in the given time instant

- [/ N is the probabilistic instantaneous relative rate of the infection spreading through these edges



Isolated Mass Action Solution Example
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- Solution found numerically, though this particular one can still be found analytically, noting X(t) = N - V(t)

- |leading to the logistic equation / curve

- contains not so surprising (almost) exponential episodes followed by somewhat relaxed regions



Exponential, Linear, and Mass Action Slopes Comparison
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Finalising the Picture and Going Dimensionless

Susceptible Infected -
& Y
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Partial Optimisation Criteria (SIR-based)
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Anti-Epidemic Interventions

removal rate tntervention 4

transmission rate tntervention ¥

- moderating contact rate - broad testing

- decreasing infection probability - contact tracing
- vaccination
Susceptible Infected -
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Example: Qualitative Study of Two Ideal Consecutive Lockdowns
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Example: Infectious Compartment Comparative Close-Up
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Real-World Lockdown Serious Modelling Example (UK)
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Fig. 4. Projections of epidemic dynamics under different control measures. We compare four alternative scenarios for
non-pharmaceutical interventions from 1 January 2021: (i) mobility returning to levels observed during relatively moderate
restrictions in early October 2020; (ii) mobility as observed during the second lockdown in England in November 2020,
then gradually returning to October 2020 levels from 1 March to 1 April 2021,
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Epidemic Phase Portrait (yet, another viewpoint on the epidemic)

, RO =2.7, p=0.37037
L (t) B e —— e S — S — T —— -
1.0} . il

|||||||||||||||||||||||




RO Depe
pendency and Consequ
ences

L 1111077 7
van///// /S |
sz//////////?// 1111
Yilir ZARN e
Hllmz/////////f/j//iji w//////?%?;:‘:: % - phase f
i fff///////////??/ v lfff////////?//????/i:‘i phase field together w
mmzm//////////////é/ "um/////%///?ig:: immunity t with the h
Mmmw////////??/ o "mw//////?//??%/;:: y threshold p | erd
iy 77 2AMNi i determl pist
l‘,ufffffu //////////%??7 g "fffff’/ /?%/%5525::: | rmined by the ully
R ZARNil e controll (possib
S //////////// ‘H j/ //’/?//??/jf//k ed) ba ' | y
T i //;4%///5;:: - num sic reproduct
g S I {/’ ' Wééé?;jﬁiﬁ: ber (p — 1 uction
| ////////‘//‘;\\\ ' S /Ro)
Y %ZEEE:E&\ R — - o
1, ///;:«\iiii o ckdow |
IRl V//%? ot | f////??;:\:isiix\ | R this | ns primari
WWZZE::::ESS Wimity “this is actually s control basic
I //%g?i::zzzg | fzj%zzg‘g‘ggg‘gis for anothe y swapping one f
o 7 //:j\\zi\ I 4??Z§::‘Q§§\Q\ her one (ba ne field
e Ml I O g 4??:\‘<§\\§§\ | Ck-ana-t
7 e i /it&i*&i : - orthy
j// (P — /'////:h‘\\\ssszs\ VaCC|na-t
Rl sessnns R /7 - N jon add
I -~ (/e NN R (in thi res
e S | [T ol (in this m ses the effecti
""""""" T 1m%/£it;f>\\fﬁ\ W OdeOit' ective
....... ZE=SSNSN rmhole i the uno actuall
llllllll ST e in th y a
lllllllll e unChanged f. ‘d
e




SIR Compartmental Epidemic Model
- Including simple demography, now

N/ N = u

G Y

U U U

- weset U very high (with respect to a pure demography) here to illustrate endemic equilibrium in general
- ownthe other hand, in reality, demography is not the only reason for endemic states anyway



- we set U very high (with respect to a pure demography) here to illustrate endemic equilibrivum in general
- own the other hand, tn reau',ta, demography Ls not the only reason for endemic states anyway

Endemic Equilibrium is Asymptotically Stable for Ro > 1

Ro=0L/(U+7Y) 27
" =1/R, X 0.3F
) " ~ 0.06

tLmee



Direction field of the model™ equations brings yet-another viewpoint
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UK-Style Equilibrium and One More Thing to Add

Cases

People tested positive

Latest data provided on 2 November 2021

Daily

Last 7 days
280,479 1-32,435 (-10.4%)

» Rate per100.000 people: 416.9

Jun Jul Aug Sep

All cases data

Deaths Healthcare

Deaths within 28 days of positive Patients admitted

teSt Latest data provided on 29 October 2021
Latest data provided on 2 November 2021 Daily

Daily 1,002

293 Last 7 days

Last 7 days 7197  M176 (2.5%)

1,131 1149 (15.2%)

» Rate per100.000 people: 1.5

Jun Jul Aug Sep Oct Nov Jun Jul Aug

All deaths data All healthcare data

Testing
Virus tests conducted

Latest data provided on 1 November 2021

Daily

905,663

Last 7 days
5,977,521 1-238,425 (-3.8%)

Jun Jul Aug Sep Oct Nov

All testing data

[https://coronavirus.data.gov. uk]



https://coronavirus.data.gov.uk

Anti-Epidemic Controls Simulation (for whatever purpose)

| corresponds to estimations based \
the countermensures on an itnoependent |
to be appL'Leal model ‘

AntlL- EPLdemw Cowntrol

*) Note the SEIR model szust an example



Consider This Control Chain

epidemic code — the pandemic — the government — the economics



How Much Can We Trust the Models?

Not much when a deliberate manipulation 1s under question

- There are two principal vulnerabillities allowing for “anti-epidemic take over’

- Invertibility, we can find a calibration for any physically plausible epidemic
forecast

- reversibility, we can track this calibration back in time to see how to
Manipulate contemporary statistical data to get the desired forecast

-+ Assuming we can predict the governmental reaction on the forecast, we could
control the state this way
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