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Still Remember

• We model it as a machine 

- it has its code (epidemic code) 

- it consumes energy (of us) 

- it is still going on 

• If we do rely on a model, we shall respect all it can tell us fully



SISV Model for Vaccination
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ODE “EpiCode” and Disease-Free Equilibrium
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Disease-Free Equilibrium Stability and R0 Identification

Considering Jacobian in 
Edisease-free, we can find the 
following eigenvalues
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Vaccination Planning

‣ efficacy & speed (!) 

‣ uniformity (!) 

‣ after all, vaccination dynamics is 

- complicated enough for the 
backward bifurcation to occur 

- coexistence mechanism for 
multiple pathogen variants

R (ψ ) = β(µ + (1− ε )ψ )
(µ + γ )(µ +ψ )

R (ψ = 0) = R0 =
β

µ + γ
R (ψ →∞)→ (1− ε )R0

R (ψ critical ) = 1⇒ψ critical =
(R0 −1)µ

1− (1− ε )R0

note ψ critical →∞ for (1− ε )R0 →1



And then, we can formulate the threshold

‣ Despite having stochastic 
interpretation, the vaccinated fraction  
threshold is given as a result of the 
vaccination dynamics, now. 

‣ Similarly to R0 which is formulated 
primarily as a stability indicator 
instead of purely statistical parameter. 

‣ Nevertheless, these variables still 
provide us a useful bridge in between 
deterministic and stochastic models.

threshold = vcritical =
ψ critical

µ +ψ criticial

= 1
ε
1− 1

R0

⎛

⎝⎜
⎞

⎠⎟



Basic Vaccination Equation for HIT

• Assumptions: 

- vaccine distributed uniformly among 
yet-susceptible people 

- vaccine efficacy ε - for spreading 

- immunity does not vanish in near time 
(circa one year, at least) 

• Recovered people fraction bearing natural 
immunity then sum up with the vaccinated 
fraction 

- not shown here for clarity 

- be careful with overlaps
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2.7 3.5 4.5 5.5 6.45
92 % 68 % 78 % 85 % 89 % 92 %
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SIRH to Study Incidence Growth Rates Correlations

ds(t)
dt

= −γ Re(t)i(t)
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Removed
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= γω i(t)

dr(t)
dt

= γ (1−ω )i(t)

- the gamma-omega split preserves R0 formulation w.l.o.g. 
- Hospital path to Removed omitted for clarity, as we keep focus on incidences 
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Generalised Incidences of Many Kinds

‣ incidence(t) is the observable 
number of daily new cases 

‣ ric(t) is the observable number of 
daily new recovered cases (formerly 
infectious) 

‣ hic(t) is the observable number of 
daily new hospital admissions 

Statistical warning: “Observable” does not necessarily imply 
truly observed! But this is not in our scope here.
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Let us investigate growth-like equations for our incidences
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dt
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d(hic(t))
dt

= γω di(t)
dt

= γω i(t) γ (Re(t)−1)⎡⎣ ⎤⎦ = hic(t) γ (Re(t)−1)⎡⎣ ⎤⎦



Growth Rates Are Strongly Correlated (regardless "⍵)

‣ incidence(t) daily relative growth rate 

‣ hic(t) daily relative growth rate 

‣ transient term causing retardation effects due to R(t) change 
(multiplied 200-times for amplification) 

‣ both incidences are simply reverse-estimated from synthetic values to 
illustrate a typical straight-forward observation scenario

fast demography included to see both decreasing and increasing rates



[https://coronavirus.data.gov.uk]

https://coronavirus.data.gov.uk
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