Mathematical Epidemiology - Vaccination, Limits, and Rates Lecture series at Faculty of Mathematics and Physics, CUNI in Prague

Tomáš Rosa, Ph.D.

Head of Cryptology and Biometrics Competence Centre of Raiffeisen BANK International in Prague

Still Remember

- We model it as a **machine** •
 - it has its code (epidemic code)
 - it consumes energy (of us)
 - it is still going on
- If we do rely on a model, we shall respect all it can tell us fully

SISV Model for Vaccination

ODE "EpiCode" and Disease-Free Equilibrium

$$\frac{dS}{dt} = \Lambda - \frac{\beta}{N}SI + \chi\gamma I - (\mu + \psi)S$$
$$\frac{dI}{dt} = \frac{\beta}{N}SI + \frac{\beta(1 - \varepsilon)}{N}VI - (\mu + \gamma)I$$
$$\frac{dV}{dt} = \psi S - \frac{\beta(1 - \varepsilon)}{N}VI + (1 - \chi)\gamma I - \mu V$$

$$\frac{dN}{dt} = \Lambda - \mu N \Longrightarrow N^* = \frac{\Lambda}{\mu}$$

Disease-Free Equilibrium Stability and R0 Identification

Considering Jacobian in *E*_{disease-free}, we can find the following **eigenvalues**

$$\lambda_{1} = -\mu$$

$$\lambda_{2} = -(\mu + \psi)$$

$$\lambda_{3} = \beta s_{0}^{*} + \beta (1 - \varepsilon) v_{0}^{*} - (\mu + \gamma)$$

$$R_0(\boldsymbol{\psi}) = \frac{\beta(\mu + (1 - \varepsilon)\boldsymbol{\psi})}{(\mu + \gamma)(\mu + \boldsymbol{\psi})} < 1$$

Vaccination Planning

$$\mathcal{R}(\psi) = \frac{\beta(\mu + (1 - \varepsilon)\psi)}{(\mu + \gamma)(\mu + \psi)}$$

$$\mathcal{R}(\boldsymbol{\psi}=0) = \mathcal{R}_0 = \frac{\beta}{\mu + \gamma}$$
$$\mathcal{R}(\boldsymbol{\psi} \to \infty) \to (1 - \varepsilon)\mathcal{R}_0$$

$$\mathcal{R}(\psi_{critical}) = 1 \Longrightarrow \psi_{critical} = \frac{(\mathcal{R}_0 - 1)}{1 - (1 - \varepsilon)}$$

note $\psi_{critical} \to \infty$ for $(1 - \varepsilon)\mathcal{R}_0 \to 1$

- efficacy & speed (!)
- uniformity (!)
- after all, vaccination dynamics is
 - complicated enough for the backward bifurcation to occur

U	
$\mathcal{R}_{_0}$	

- coexistence mechanism for multiple pathogen variants

And then, we can formulate the threshold

threshold = $v_{critical} = \frac{\psi_{critical}}{\mu + \psi_{oriticial}} = \frac{1}{\varepsilon} \left(1 - \frac{1}{\varkappa} \right)$

- Despite having stochastic interpretation, the vaccinated fraction threshold is given as a result of the vaccination dynamics, now.
- Similarly to R0 which is formulated primarily as a stability indicator instead of purely statistical parameter.
- Nevertheless, these variables still provide us a useful bridge in between deterministic and stochastic models.

Basic Vaccination Equation for HIT

0	Ro				
E	2.7	3.5	4.5	5.5	6
92 %	68 %	78 %	85 %	89 %	9
86 %	73 %	83 %	90 %	95 %	9
80 %	79 %	89 %	97 %	—	
63 %	100 %				

- 4	45
2	%
8	%
_	_
_	_

- vaccine distributed *uniformly among* yet-susceptible people
- vaccine efficacy ε for spreading
- immunity does not vanish in near time (circa one year, at least)
- Recovered people fraction bearing natural immunity then sum up with the vaccinated fraction
 - not shown here for clarity
 - be careful with overlaps

SIRH to Study Incidence Growth Rates Correlations

$$\frac{ds(t)}{dt} = -\gamma R_e(t)i(t) \qquad \frac{di(t)}{dt} = i($$

 $R_e(t) = R_0 s(t), R_0 = \frac{\beta}{\gamma}$

- the gamma-omega split preserves Ro formulation w.l.o.g.
- Hospital path to Removed omitted for clarity, as we keep focus on incidences

Generalised Incidences of Many Kinds

 $\frac{dn(t)}{dt} = \gamma \omega i(t) = hic(t)$

- incidence(t) is the observable number of daily new cases
- ric(t) is the observable number of daily new recovered cases (formerly infectious)
- hic(t) is the observable number of daily new hospital admissions

Statistical warning: "Observable" does not necessarily imply truly observed! But this is not in our scope here.

Let us investigate growth-like equations for our incidences

 $\frac{d(incidence(t))}{dt} = \gamma R_e(t)i(t) \left[\gamma (R_e(t) - 1)\right] + \gamma R_e(t)i(t)$

$$\frac{d(ric(t))}{dt} = \gamma(1-\omega)\frac{di(t)}{dt} = \gamma(1-\omega)i(t)\left[\gamma(R_e(t)-1)\right] = ric(t)\left[\gamma(R_e(t)-1)\right]$$

 $\frac{d(hic(t))}{dt} = \gamma \omega \frac{di(t)}{dt} = \gamma \omega i(t) \left[\gamma (R_e(t) - 1) \right] = hic(t) \left[\gamma (R_e(t) - 1) \right]$

$$Yi(t)\frac{dR_{e}(t)}{dt} = incidence(t) \left[\gamma(R_{e}(t)-1)\right] + \gamma i(t)\frac{dR_{e}(t)}{dt}$$

Growth Rates Are Strongly Correlated (regardless ω)

500 400

- incidence(t) daily relative growth rate
- *hic(t)* daily relative growth rate
- transient term causing retardation effects due to R(t) change (multiplied 200-times for amplification)
- both incidences are simply reverse-estimated from synthetic values to illustrate a typical straight-forward observation scenario

fast demography included to see both decreasing and increasing rates

Vaccinations People vaccinated

Up to and including 6 December 2021

Cases

People tested positive

Latest data provided on 7 December 2021

Daily 45,691

Last 7 days

Rate per 100,000 people: 478.9

[https://coronavirus.data.gov.uk]

References and Further Reading

(1) Bjornstad, O.-N.: Epidemics - Models and Data Using R, Springer, 2018

- Applied Mathematics, Vol. 69, Springer, 2019
- to Approximate Models, Interdisciplinary Applied Mathematics, Vol. 46, Springer, 2017
- (5) Martcheva, M.: An Introduction to Mathematical Epidemiology, Texts in Applied Mathematics, Vol. 61, Springer, 2015
- Press, 2010

(2) Brauer, F., Castillo-Chavez, C., and Feng, Z.: Mathematical Models in Epidemiology, Texts in

(3) Kiss, I.-Z., Miller, J.-C., and Simon, P.-L.: *Mathematics of Epidemics on Networks – From Exact*

(4) Li, M.-Y.: An Introduction to Mathematical Modelling of Infectious Diseases, Springer, 2018

(6) Vynnycky, E. and White, R.-G.: An Introduction to Infectious Disease Modelling, Oxford University

Revision History

- 2021/11/24: release version 1
- 2021/12/01: release version 2
- 2021/12/08: UK chart updated, release version 2b