Quantum Computation Fundamentals

Tomáš Rosa, Ph.D.
Cryptology and Biometrics Competence Centre and Quantum Computations Innovation Lab
Raiffeisen BANK International

Cryptology and Biometrics Competence Centre

Jiří Pavlů
Ph.D. candidate in cryptology jiri.pavlu@rb.cz
crypto@rb.cz

Tomáš Rosa
Ph.D. in cryptology tomas.rosa@rb.cz

Mach-Zehnder Experiment Tells a Lot of the Story

Classical Computer - Classical Bit

Classical bit

Quantum Computer - Quantum Bit (Qubit)

Postulate \#1: Qubit state belongs to Hilbert space of dimension 2

$$
|\psi\rangle=\omega_{0}|0\rangle+\omega_{1}|1\rangle=e^{i \gamma}\left(\cos \frac{\theta}{2}|0\rangle+e^{i \varphi} \sin \frac{\theta}{2}|1\rangle\right), \omega_{i} \in \underset{\left|\omega_{0}\right|^{2}+\left|\omega_{1}\right|^{2}=1}{\mathbb{C}}
$$

Postulate \#2: Qubit evolution is given by a unitary transformation

Postulate \#3: Projective probabilistic measurement

- When measured, quantum state collapses into one of particular eigenstates comprising the basis vectors of the corresponding Hilbert space.
- For a qubit, these are labeled $\mid 0>$ and $\mid 1>$. So called computational basis.
- Superposition cannot be seen directly. It governs the probability of the measurement outcome; coefficients ω_{i} called probability amplitudes.

$$
\begin{aligned}
& P[\text { result }=|i\rangle]=\left|\omega_{i}\right|^{2}=\omega_{i} \cdot \omega_{i}^{*} \\
& =\langle\psi \| i\rangle\langle i \| \psi\rangle
\end{aligned}
$$

Dirac's Bra-Ket Notation

Dirac's Bra-Ket Notation

Postulate \#4: Qubit register state belongs to $\boldsymbol{H}_{2} \otimes \boldsymbol{H}_{2} \otimes \ldots \otimes \boldsymbol{H}_{2}$

- Exponencial growth of dimension: n-qubit register belongs to Hillbert space of dimension 2^{n} and can be in a superposition of all of its 2^{n} eigenstates.
- together with linear operators acting on this register, this is the source of socalled quantum parallelism
- however, the superposition still cannot be seen directly, it still just governs the probability of the measurement outcome
- eigenstates (computational basis) |00...0>, |00...1>, ..., |11...1>
- sometimes, the tensor product is noted explicitly $|00 \ldots 0>=|0>|0>\ldots| 0>$, etc.

Separable Register State Example (Note the Pure Tensor Product...)

Entanglement (Note the Unavoidable Sum of Tensor Products...)

$$
|\psi\rangle=\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle
$$

Quantum Operator/Instruction Flow Example ("Blinky" Experiment)

- also showing the computational interference beyoud the reach of classical probabilistic machines
- also resembling the Mach-Zehnder constructive/destructive interference experiment

Quantum "Blinky" Project

Quantum State: Computation Basis

\subsection*{0.875
 0.75
 | 0.625 | 058 |
| :---: | :---: |
| 0.5 | |
| 0.375 | |
| 0.25 | |
| 0.125 | |
| 0 | |
 }

Quantum Circuit

Quantum State: Computation Basis

Quantum Circuit

OPENQASM 2.0


```
include "qelib1.inc";
qreg q[5];
creg c[5];
h q[0];
h q[0];
measure q[0] -> c[0];
```


Quantum Computational Paradigms (circuit-based model)

- quantum parallelism
- since dimension grows exponentially and operators are linear
- interference, both constructive and destructive
- enabled by the complex probability amplitudes
- actually, we are working with complex probability "square" roots
- entangled states
- delivering extra salt grain to the algorithms

IBM Q quantum computing systems

Chip with superconducting qubits and resonators

Main Challenges for Quantum Computers Today

- We have a Noisy Intermediate-Scale Quantum (NISQ) technology
- coherence time
- scalability

EU Commission Roadmap (Quantum Manifesto)

Quantum Technologies Timeline

Quantum Computers Going Practical

Jack D. Hidary

Quantum Computing: An Applied
 EXPERT INSIGHT
 Dancing with Qubits

 ApproachHow quantum computing works and how it can change the world

Spring

Mastering

Quantum Computing with IBM QX

Deutsch-Jozsa: Quantum Computation "Hello World"

- Let us have $\boldsymbol{f}:\{0,1\}^{\mathrm{N}} \rightarrow\{\mathbf{0}, \mathbf{1 \}}$ that is promised to be either constant or balanced (nothing else). Balanced means the function vector has exactly $\mathbf{2}^{\mathrm{N}-1}$ ones (and zeros).
- we have to decide what kind of function we have
- to give a deterministic answer classically, we need at least $\mathbf{2}^{N-1}+\mathbf{1}$ invocations of f
- on a quantum computer, it suffices to do just one invocation of f
- exponential speed up thanks to the quantum parallelism and interference

Simple Case for $N=1$

$x, f(x)$
Constant function

0

1
0
1

1

1

0

DJ Quantum Computation Scheme (with balanced f example)

Quantum State: Computation Basis

Quantum Circuit

Quantum State: Computation Basis

Quantum Circuit

Shor's Algorithm - Phase Estimation Approach

Period Finding and Factorisation (Shor's Algorithm)

$$
\begin{aligned}
& \quad \operatorname{Let} f(k)=a^{k} \bmod N \\
& \text { and let us find } r: f(k+r)=f(k) \\
& \Rightarrow a^{k+r} \bmod N=a^{k} \bmod N \\
& \Rightarrow a^{r} \bmod N=1, \text { so } N \text { divides } a^{r}-1 \\
& \Rightarrow \text { for even } r, N \text { divides }\left(a^{\frac{r}{2}}+1\right)\left(a^{\frac{r}{2}}-1\right) \\
& \Rightarrow \text { for } N \nmid\left(a^{\frac{L}{2}} \pm 1\right), \operatorname{gcd}\left(a^{\frac{L}{2}} \pm 1, N\right) \text { are factors of } N
\end{aligned}
$$

Quantum "Cryptocalypse"

"I estimate a $1 / 7$ chance of breaking RSA-2048 by 2026 and a 1/2 chance by 2031."

- Michele Mosca, November 2015

SIKE for Java
 Quantum Resistant Cryptography

Brought to you by

Raiffeisen
BANK
(1) wultra

Peaceful Quantum Computing (chemistry, finance, ...)

Conclusion

- Quantum computing is real
- we are facing technological and technical issues, but not principal ones
- we already went a similar way with all the classical computing machinery
- Retroactive cryptanalysis
the question of opening today's communication is not if, but when
- Quantum computation is not only a threat
- QPUs offer promising technological advantages, e.g. for financial analysis

