Quantum Computation Fundamentals

Tomáš Rosa, Ph.D.

Cryptology and Biometrics Competence Centre and Quantum Computations Innovation Lab Raiffeisen BANK International

Cryptology and Biometrics Competence Centre

Jiří Pavlů jiri.pavlu@rb.cz

crypto@rb.cz

Ph.D. candidate in cryptology

Tomáš Rosa Ph.D. in cryptology tomas.rosa@rb.cz

Mach-Zehnder Experiment Tells a Lot of the Story

Beamsplitter

Classical Computer - Classical Bit

Quantum Computer - Quantum Bit (Qubit)

|0**>**=(¹₀)

Postulate #1: Qubit state belongs to Hilbert space of dimension 2

Postulate #2: Qubit evolution is given by a unitary transformation

$$i\hbar \frac{\partial |\psi\rangle}{\partial t} = H |\psi\rangle$$
$$|\psi_t\rangle = U_t |\psi_{t_0}\rangle, \ U_t = e^{\frac{-iHt}{\hbar}}$$
$$e^A = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \dots$$

Postulate #3: Projective probabilistic measurement

- When measured, quantum state collapses into one of particular eigenstates comprising the basis vectors of the corresponding Hilbert space.
- For a qubit, these are labeled |0> and |1>. So called computational basis.
- Superposition cannot be seen directly. It governs the probability of the measurement outcome; coefficients ω_i called **probability amplitudes**.

 $P[result = |i\rangle]$ $= \langle \psi | i \rangle \langle i | \psi$

$$] = |\omega_i|^2 = \omega_i \cdot \omega_i^*$$

Dirac's Bra-Ket Notation

dual vector

Dirac's Bra-Ket Notation

Postulate #4: Qubit register state belongs to $H_2 \otimes H_2 \otimes \dots \otimes H_2$

- dimension 2^n and can be in a superposition of all of its 2^n eigenstates.
 - called quantum parallelism
 - probability of the measurement outcome
 - eigenstates (computational basis) **[00...0>**, **[00...1>**, ..., **[11...1>**

• Exponencial growth of dimension: n-qubit register belongs to Hilbert space of

- together with linear operators acting on this register, this is the source of so-

- however, the superposition still cannot be seen directly, it still just governs the

- sometimes, the tensor product is noted explicitly $|00...0\rangle = |0\rangle|0\rangle...|0\rangle$, etc.

Separable Register State Example (Note the Pure Tensor Product...)

Entanglement (Note the Unavoidable Sum of Tensor Products...)

 $\left|\psi\right\rangle = \frac{1}{\sqrt{2}}\left|00\right\rangle + \frac{1}{\sqrt{2}}\left|11\right\rangle$

Quantum Operator/Instruction Flow Example ("Blinky" Experiment)

— also showing the computational interference beyond the reach of classical probabilistic machines
 — also resembling the Mach-Zehnder constructive/destructive interference experiment

$\frac{\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}}{\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}}$

Quantum "Blinky" Project

Quantum State: Computation Basis

Quantum Circuit

	Download CSV
0.420	
0000	

Quantum State: Computation Basis

1	
0.875	
0.75	
0.625	
0.5	
0.375	
0.25	
0.125	1 1 1 1 1 1
0	

Quantum Circuit

Download CSV

🛨 Open in Composer

Edit in QASM Editor

Quantum Computational Paradigms (circuit-based model)

- quantum parallelism
 - since dimension grows exponentially and operators are linear
- interference, both constructive and destructive
 - enabled by the complex probability amplitudes
 - actually, we are working with complex probability "square" roots
- entangled states
 - delivering extra salt grain to the algorithms

IBM Q quantum computing systems

Refrigerator to cool qubits to 10 - 15 mK with a mixture of ³He and ⁴He

Chip with superconducting qubits and resonators

PCB with the qubit chip at 15 mK Protected from the environment by multiple shields

Main Challenges for Quantum Computers Today

- We have a Noisy **Intermediate-Scale** Quantum (NISQ) technology
 - coherence time
 - scalability

EU Commission Roadmap (Quantum Manifesto)

Quantum Technologies Timeline

	-		
	_	-	_
			_
	-		_
-	-	_	
	-	_	_
	_	_	-
			-
	-	-	-
		-	-
	-	-	
and the second	_		
	_		
		-	-
			-

Quantum Computers Going Practical

Jack D. Hidary

Quantum Computing: AnApplied Approach

EXPERT INSIGHT

Dancing with Qubits

How quantum computing works and how it can change the world

Robert S. Sutor

Mastering **Quantum Computing** with IBM QX

O'REILLY[®] Programming Quantum Computers

Eric R. Johnston, Nic Harrigan & Mercedes Gimeno-Segovia

Deutsch-Jozsa: Quantum Computation "Hello World"

- Let us have *f*: {0, 1}^N → {0, 1} that is promised to be either constant or balanced (nothing else). Balanced means the function vector has *exactly* 2^{N-1} ones (and zeros).
 - we have to decide what kind of function we have
 - to give a deterministic answer classically, we need at least $2^{N-1} + 1$ invocations of f
 - on a quantum computer, it suffices to do just one invocation of f
 - exponential speed up thanks to the quantum parallelism and interference

Simple Case for N = 1

DJ Quantum Computation Scheme (with balanced f example)

Device: ibmqx4

Quantum State: Computation Basis

Quantum Circuit

Download CSV

OPENQASM 2.0

```
1 include "qelib1.inc";
2 qreg q[5];
3 creg c[5];
4 
5 X q[0];
6 h q[0];
7 h q[1];
8
```

🛨 Open in Composer

Device: ibmqx4

Quantum Circuit

Download CSV

OPENQASM 2.0

1	<pre>include "qelib1.inc";</pre>
2	<pre>qreg q[5];</pre>
3	<pre>creg c[5];</pre>
4	
5	x q[0];
6	h q[0];
7	h q[1];
8	

🛨 Open in Composer

Shor's Algorithm - Phase Estimation Approach

Period Finding and Factorisation (Shor's Algorithm)

Let f(k)and let us find

 $\Rightarrow a^{k+r} \mod N = a^k \mod N$

$$= a^{k} \mod N$$

r: $f(k+r) = f(k)$

 $\Rightarrow a^r \mod N = 1$, so N divides $a^r - 1$ \Rightarrow for even r, N divides $(a^{\frac{r}{2}} + 1)(a^{\frac{r}{2}} - 1)$

 \Rightarrow for $N \nmid (a^{\frac{r}{2}} \pm 1)$, $gcd(a^{\frac{r}{2}} \pm 1, N)$ are factors of N

Quantum "Cryptocalypse"

"I estimate a 1/7 chance of breaking RSA-2048 by 2026 and a 1/2 chance by 2031."

- Michele Mosca, November 2015

Open Source to Stay Safe for Tomorrow

SKEforzeva **Quantum Resistant Cryptography** Brought to you by aiffeisen () wultra

[https://medium.com/wultra-blog/quantum-resistant-cryptography-introducing-sike-for-java-376d201afa6e]

Peaceful Quantum Computing (chemistry, finance, ...)

Value At Risk estimation

Conclusion

Quantum computing is real • - we are facing technological and technical issues, but not principal ones - we already went a similar way with all the classical computing machinery

- **Retroactive cryptanalysis** •
- the question of opening today's communication is not if, but when
 - **Quantum computation is not only a threat** •

QPUs offer promising technological advantages, e.g. for financial analysis

