
 

Cryptographic Insecurity of the 
Test&Repeat Paradigm 

Tomáš ROSA 
eBanka, a.s., Václavské náměstí 43 

109 00 Prague 1, Czech Republic, EU, trosa@ebanka.cz 

Abstract. Let f(x) be a certain cryptographic function and let g, g: Im(f) → {true, 
false}, be an integrity test saying whether a particular value of f(x) fits into 
predefined integrity boundaries or not. The “Test and Repeat” paradigm is then 
characterized by the following pseudocode: repeat let y = f(x) until g(y) = true. On 
a first look, it may seem like a kind of best programming practice that can only 
improve overall security of the module. Especially, an architect can see it as a 
rather strong countermeasure against attacks based on computational faults – so 
called fault attacks. In this article, however, we will show that such a practice can 
induce particular cryptographic weaknesses. Therefore, it cannot be regarded as a 
general security improvement. Especially, it can even increase a vulnerability to 
the fault attacks. Its usage in cryptographic modules shall, therefore, undergo a 
proper cryptanalysis before being actually deployed. 
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Introduction 

In practice, we can meet the “Test and Repeat” (TAR) paradigm in many software and 
hardware applications, including cryptographic modules. Roughly speaking, it is a 
technical construction that encapsulates the following two very basic demands of 
computing systems architects: 

 
1. To prevent a propagation of faulty results. 
2. To ensure certain level of robustness of the application being designed. 
 
The first aim is achieved by using the test part of TAR, while the second one is 

achieved by repeating the computation together with the test part several times before 
giving up the whole operation. Arranged in this way, TAR might also be regarded as a 
rather strong countermeasure against fault attacks ([1], [2]), especially against those 
ones based on an analysis of faulty results of a corrupted computation.  

This paper was written as a tutorial note of a cryptologist to security engineers 
who design the hardware and-or software architecture of cryptographic modules. We 
will see two illustrative examples serving as a proof that TAR shall not be regarded as 
a general countermeasure, since there are realistic attacks that can be even right 
allowed or, at least, accelerated and hidden by it. The first example in §1 concerns a 



 

subliminal covert channel [2] occurring in Vernam’s one-time pad [3] equipped with a 
random number generator [3] which uses TAR. The second example in §2 discusses a 
fault attack presented in [4]. This attack is focused on DSA and we will see that it can 
pass totally undetected when a “reasonable” TAR is applied. Moreover, TAR actually 
helps an attacker to keep her attack hidden and unrecognized here. 

1. Case 1: TARed RNG 

Let us imagine the following scenario that is based on real situations arising in the 
military area: Alice works with highly secured classified information which Bob wants 
to see. However, despite working for the same company, Bob does not possess the 
required clearance level. So, he seduces Alice and convinces her to cooperate with him 
on the classified data theft. To prevent such attacks, there are often strict technical 
countermeasures applied, so Alice cannot simply copy the clear data on a CD ROM 
and pass them to Bob. She can only do some operations with the clear data within her 
terminal. Any data written to any removable media or sent through a network are 
encrypted. An undesirable way allowing Alice to inconspicuously send the clear data 
to Bob is then referred to as a covert channel or even as a subliminal covert channel 
([2], [5], [6]), depending on a technique used to create the channel. Obviously, a 
considerable effort is made to eliminate all these channels [6]. 

Now, let us assume that for encrypting the networked data from Alice, the system 
uses the Vernam’s one-time pad cipher [3]. Denoting the plaintext data from Alice as 
an N-bit binary vector M = (m1, m2, …, mN), the corresponding ciphertext C = (c1, c2, 
…, cN) is computed as: 

C = M ⊕ K, i.e. ci = mi ⊕ ki, for 1 ≤ i ≤ N, (1) 

where K = (k1, k2, …, kN) is a keystream of the same length as the message being 
encrypted. The keystream is a-priori unknown for both Alice and Bob. Arranged this 
way, the scheme is close to being unconditionally secure, i.e., for instance, unbreakable 
regardless an attacker computing power. A necessary condition is, however, that the 
keystream bits are independent and uniformly distributed random binary variables. 
Therefore, the scheme needs what is usually called a cryptographically strong random 
number generator (RNG). Note that in practice, such a generator would probably be 
based on a physical source of randomness (diode noise, etc.) which needs to be 
checked periodically for a malfunction (manifesting itself as a statistical irregularity in 
output data). Such a testing shall, however, not be arranged as TAR: If a statistical 
singularity occurs, the device must be put out of working order. Note that such a 
singularity does not imply that the device is really corrupted. Actually, a lot of alarms 
will be false. Therefore, in practice, it may be tempting to design a “cost saving” RNG 
which will automatically restart after the alarm giving the hardware next chance to pass 
the test. Unfortunately, devices with this behavior were already met in practice. 

Provided that a TARed RNG is used for the keystream computation and Bob has 
an access to the ciphertext C, the construction of a subliminal covert channel from 
Alice to Bob is easy: Let us denote the statistical test applied on each L-bit binary 
block B = (b1, b2, …, bL) produced by this RNG as g: {0, 1}L → {true, false}. If 



 

g(B) = true, then the block passed the test. Otherwise, the RNG generates a new block 
and repeats the test. For the sake of simplicity, let L | N and assume the keystream is 
constructed from N/L blocks as K = B1 || B2 || … || BN/L. Then there is no i, 1 ≤ i ≤ N/L, 
such that g( (kL(i-1) + 1, kL(i-1) + 2, …, kLi) ) = false, since all the blocks producing an alarm 
were filtered out by TAR. If Alice sends a plaintext message M consisting of N zero 
bits, we get C satisfying: 

g( (cL(i-1) + 1, cL(i-1) + 2, …, cLi) ) = true, for all 1 ≤ i ≤ N/L, (2) 

since M = 0 implies C = K according to Eq. (1). On the other hand, if Alice 
encrypts a block of N uniformly distributed independent random bits, then for all 1 ≤ i 
≤ N/L, there is a nonzero probability p that g( (cL(i-1) + 1, cL(i-1) + 2, …, cLi) ) = false. The 
value of p corresponds with the probability of the false alarm for the particular test 
being used. Therefore, observing C long enough, Bob can distinguish if Alice 
encrypted a zero message or a message of random bits. From here, Bob can gain 1 bit 
of information. He gets another bit from another transmission, and so on. The expected 
length T of a ciphertext needed for 1 bit transmission can be estimated as T = Lp-1. For 
example, let the testing function g implement the continuous RNG test defined in 
§4.9.2 of FIPS 140-2 [7] with the block size L = 16 b.  This test returns false if and 
only if the two consecutive blocks of 16 bits produced by the tested RNG are the same. 
Therefore, the probability of a false alarm is p = 2-16 and T = 16*216 = 220. So, Bob 
needs to observe approx. 1 Mb of ciphertext for gain of 1 bit of secret information 
from Alice. We see, that the channel can be hardly used for a transmission of common 
data files, nevertheless, it may suffice for revealing a secret password, safe lock 
combination, etc. Moreover, Alice and Bob can use error control codes to increase a 
reliability of their covert channel. We can also observe that for a certain types of 
messages, the covert channel discussed above can spontaneously convert to a side 
channel allowing an attacker to gain some secret information even without cooperation 
with the sender. 

1.1. A Cautionary Note 

Although we may reasonably assume that a professional cryptographer should avoid 
designing the aforesaid illustrative scheme, it is worth noting that the problem can be 
more complicated. Let us assume that an RNG is put of working order immediately as 
the test says false. However, the service of a keystream generation must remain 
available. To maintain required availability, several backup RNGs may be installed. 
Each of them starts when its ancestor stops. The problem with covert channel might 
seem to be solved, but it is not. If all of these RNGs use the same statistical tests, then 
we still know that M = 0 implies Eq. (2), while for a random M, there can be false 
alarms detected over the ciphertext C. Therefore, a communication from Alice to Bob 
is still allowed. We see that the problem of reasonable fault detection versus covert 
channels minimization deserves closer attention, which is, however, beyond the scope 
of this paper. 



 

2. Case 2: TARed DSA 

 It is well known cryptanalytical result that the security of a DSA [8] private key 
strongly depends on statistical properties of temporary nonces (i.e. Numbers-used-
ONCE; usually denoted as k) used for a particular signature generation. Such a nonce 
must have a uniform distribution on a certain interval and must be kept secret. 
Otherwise, an undesirable subliminal side channel is created that enables a consecutive 
leakage of the private key information in every signature made. Having collected 
enough such signatures, an attacker can recover the whole private key with a trivial 
complexity on a general personal computer or a notebook. In 2002, Nguyen and 
Shparlinski presented a theoretically stable and practically very fruitful approach [9] to 
private key recovering which employs a lattice-based solution of Nguyen’s variant of 
the hidden number problem (HNP) introduced in 1996 by Boneh and Venkatesan [10]. 
They results show, for instance, that we can recover the whole private key knowing 
only as few as the lowest three bits of each nonce for only 100 signatures made. 

In 2004, the paper of Naccache, Nguyen, Tunstall, and Whelan was made public 
on IACR’s ePrint (eprint.iacr.org) [11]. It connects the results obtained by Nguyen and 
Shparlinski together with a vulnerability to a fault injection observed for a certain kind 
of smartcard. Naccache et al. demonstrated that it was possible to use the fault injection 
to substitute known values for the lowest bytes of each nonce k. Besides the others, it is 
interesting to observe that this is such a kind of fault attack that cannot be prevented 
simply by checking each signature for faults by verifying its validity using a public 
key. Obviously, every signature made in this way is valid. So, despite seeming robust 
on a first look, it turns out that a countermeasure based on TAR is totally useless 
against this attack. The article [4] went further this way. It presented such a lattice-
based fault attack on the DSA scheme that becomes even more dangerous when the 
device under attack behaves according to a “reasonable” TAR scenario: Using the 
public key, the device checks every signature made whether it is valid or not. Only 
valid signatures can be read from the device – this constitutes the test part of TAR. 
Furthermore, the module restarts the signing procedure automatically, until a valid 
signature is computed or the number of attempts is out of a predefined boundary – this 
is the repeat part of TAR. Since designers of such a module would probably require 
certain level of robustness and independence, we may reasonably assume that the 
device would allow even hundreds of repetitions before it blocks.  

2.1. Implicit Verification of DSA Signatures 

Let (p, q, g) denote DSA public parameters according to [8]: p, q are primes, such that 
21023 < p < 21024, 2159 < q < 2160, q | p – 1, and g is a generator of a cyclic multiplicative 
subgroup G of Zp

* of order | G | = q. Furthermore, let x be a private key, x ∈ Z, 0 < x < 
q, and let y be a public key, y = gx mod p. We assume that a cryptographic module 
employing TAR paradigm (possibly as a countermeasure against fault attacks) would 
behave according to the following algorithm. The notation of input parameters respects 
the fact that, in practice, the public parameters are usually stored independently with 
both records of the public and the private key. 



 

Algorithm 1. Signing a message using DSA with implicit verification. 
Input: Message to be signed m, private key record (p, q, g, x), public key record (p, q, 

g, y), repeat boundary B. 
Output: Signature (r, s) or FAILURE. 
Computation: 

1. Let i = 1. 
2. Choose an integer nonce k at random, such that 0 < k < q. 
3. Compute r = (gk mod p) mod q. 
4. Compute s = (h(m) + rx)k-1 mod q, where kk-1 ≡ 1 (mod q) and h denotes the 

hash function SHA-1[12]. 
5. If r = 0 or s = 0 then go to 2. 
6. Compute u = h(m)s-1 mod q, where ss-1 ≡ 1 (mod q). 
7. Compute v = rs-1 mod q. 
8. Compute w = (guyv mod p) mod q. 
9. If w = r then return (r, s). 
10. i ← i + 1 
11. If i > B then return FAILURE. 
12. Go to 2. 

 
As we can see, the algorithm describes formally what a programmer would do 

naturally if she was asked to implicitly verify every signature made whether it is valid 
or not before letting it go out from a cryptographic module. Steps 2 to 4 cover the 
signature generation, while steps 5 to 9 do the signature verification. Both parts are 
written according to [8]. Another thing that would the programmer do naturally in such 
a situation is to employ an automatic repeat function which would retry the signing 
operation several times before the algorithm echoes a failure to a calling process. This 
constitutes the repeat part of TAR which is driven by the boundary denoted as B. Note 
that for a small value of the boundary (circa B ≤ 20), such an algorithm can also 
originate due to a user activity: The user, for instance, wants to send a signed e-mail, 
while the device says that there is something wrong about a signing module. We can 
reasonably expect that she would try to sign her message several times before she gives 
it up. The more eager the user is the higher B we get. 

2.2. Embedding the Fault Side Channel 

On a first glimpse, Algorithm 1 described above can be regarded as being resistant 
against fault attacks, since no faulty signature can leave perhaps the innermost place of 
the cryptographic module. Such a reasoning which could be inspired by typical 
symptoms of fault attacks on RSA (c.f. [1], [2], [13], [14]), can, however, be terribly 
misleading here. An example of fault attack that passes undetected in such a situation 
can be found in [11]. A fault attack that can be even right allowed thanks to relying on 
such a “fault tolerant” algorithm was then presented in [4]. A brief description of the 
attack follows. 

Let d be an integer, such that d | p – 1 and gcd(d, q) = 1. Furthermore, let β be an 
integer, 1 < β < p, of order ord(β) = d in Zp

*. Now, let us suppose that an attacker 
substitutes the value of g’ = gβ mod p in place of g in the private key record in 
Algorithm 1. Such a change can be theoretically possible, since g is a part of non-secret 



 

public parameters whose protection architects often tend to underestimate. For 
instance, in the CryptoAPI subsystem of the MS Windows platform, there is a function 
CryptSetKeyParam with the parameter KP_G reserved for such a purpose [15]. It is left 
up to designers of cryptographic modules how to implement this function and whether 
to allow such modifications at all. There is, however, no warning about how dangerous 
this functionality can be. Therefore, we may reasonably assume that at least some 
architects will allow the attacker to freely change the value of g. Several problems with 
integrity of a key material were also identified by Clulow for the PKCS#11 security 
standard platform [13]. There was also a successful attack based on DSA public 
parameters modification described by Klíma and Rosa in [14]. We shall, therefore, 
fully anticipate the possibility of such a modification when we discuss security aspects 
of a particular signing procedure. 

Now, let us denote r’ and s’ the variables from Algorithm 1 computed for a 
substituted value of g’ = gβ mod p. We can write: 

r’ = (gkβ k  mod p) mod q, (3) 

s’ = (h(m) + r’x)k-1 mod q, kk-1 ≡ 1 (mod q). (4) 

Let us assume that in step 8, the module uses the value of the correct generator g. 
That means that the attacker will not affect the public key record which is usually 
loaded from an independent storage – possibly from a user’s public key certificate [3]. 
Note that the attack is possible even if the attacker changes the generator in both of the 
public and private key records [4]. Let us denote u’ and v’ the values computed in steps 
6 and 7, respectively. Using their definitions together with Eq. (4) over GF(q), it 
follows that: 

u’ + v’x ≡ h(m)(s’)-1 + r’(s’)-1x ≡ (h(m) + r’x)(s’)-1 ≡ k (mod q). (5) 

Now, let us denote w’ the value computed in step 8. Since the algorithm uses the 
unaffected value of g of order q, we can use Eq. (5) and write: 

w’ = (gu’yv’ mod p) mod q = (gu’+v’x mod p) mod q = (gk mod p) mod q. (6) 

Basing on Eqs. (3) and (6), we can rewrite the condition the signature (r’, s’) must 
pass in step 9 as: 

w’ = r’ ⇔ (gk mod p) mod q = (gkβ k  mod p) mod q. (7) 

Since we can neglect an influence of “inner” collisions in the mapping ϕ(k) = 
(gkβ k  mod p) mod q (c.f. [16]), we can claim that with a probability close to 1 the 
following condition is necessary and sufficient to release the signature (r’, s’) in step 9: 

β k  mod p = 1, i.e. k ≡ 0 (mod d). (8) 



 

We see that the attacker gets nontrivial direct information about the nonce k 
whenever Algorithm 1 releases a signature pair (r’, s’), since she knows that whatever 
the nonce is, it must be an integer divisible by a known value d. This creates a vital 
side channel that she can use to recover the whole value of the private key using a 
slightly modified approach from [9]. A detailed description of the computation is given 
in [4]. Here, we present the following table showing certain experimental results. 

Table 1. Experimental fault attacks on several randomly chosen DSA instances. 

Exp. No. Divisor d #Signatures #Signatures Total Exp. Duration 
1 12 70 880  182 s 

2 12 55 688  66 s 

3 15 61 923  120 s 

4 12 55 649  63 s 

5 2 weak channel N/A N/A 

6 14 48 550  44 s 

7 22 46 912  67 s 

8 12 55 832  76 s 

9 2 weak channel N/A N/A 

10 12 65 621  118 s 

 
Each numbered row of Table 1 corresponds to an experimental fault attack on a 

particular randomly generated DSA instance. The divisor d was chosen automatically 
by the attacking program to be small enough while producing a usable side channel for 
the attack. Small values are desirable, since the probability that step 9 releases a 
particular signature can be estimated as d-1. The number of TAR iterations follows a 
geometric distribution, so the expected value and the variance of the number of 
signatures computed before releasing a valid signature is then EX = d and Var(X) = d(d 
- 1), respectively. Sometimes, there was no suitable divisor found with respect to a 
realistically tight boundary of repetitions (several hundreds). The number of signatures 
in Table 1 denotes the number of valid signatures used for a successful private key 
reconstruction. The total number of signatures illustrates the number of invalid 
signatures produced and discarded within TAR. The duration of each experiment 
shows how effective the whole attack is, since this time covers the DSA instance 
generation, the attack preparation, the signatures generation, and the private key 
reconstruction. The platform used for the experiments was a general office notebook 
with Pentium M/1.5 GHz and Windows 2000. The code was written in C++ and 
supported by the Shoup’s NTL library [17]. 

3. Conclusion 

We saw that the “Test and Repeat” paradigm cannot be regarded as a robust 
countermeasure against fault attacks, since there are realistic strategies that pass 



 

undetected by it. We also saw that there are attacks which can be even right allowed 
thanks to relying on the “power” of this approach. Therefore, despite being a bit 
paradoxical on a first glimpse, we shall use it very carefully in a cryptographic 
modules design. Of course, this is not to say that we shall not use it at all. We just shall 
bear on our minds that we must not rely solely on this approach and that we have to 
design and implement it properly. The caution mainly addresses the phase of a design 
verification in which we shall check every possible attack scenario to see whether our 
implementation can resist it or not. Otherwise, the situation about overall 
cryptanalytical attacks can become even worse, since some of them may become 
hidden and accelerated, some of them even right allowed. 
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