
November 2011, Prague

Android Ecosystem Integrity
Possible Malware Cross-Infection Vector

Tomáš Rosa
http://crypto.hyperlink.cz

November 2011, Prague

Abstract

� We first show the Screen Lock Bypass
application at work.
� This is an interesting forensics/hacking

technique in itself.

� We then conclude by noting a possible way
of an effective malware cross-infection.
� The observation is trivial. Its impact, however,

can really be dramatic.
� Especially in the area of two-factor

authentication applications.

November 2011, Prague

Experimental Setup

� The proof of concept demo was
exercised on Google Nexus S
I9023XXKF1 with Android version
2.3.6, build GRK39F.

November 2011, Prague

Screen Lock Bypass (SLB)

� Developed by Thomas Cannon [1], popularized by
Andrew Hoog [2], and freely available on the
Android Market [3].

� Its official purpose is to help users who accidentally
forgot their screen lock gesture or PIN.
� Anybody who knows the login name/password for the

Gmail account associated with the particular Android
device can use this application to try to unlock the screen.

� The success ration may not be 100 %, but it is quite high
anyway.

� In particular, we did not encounter any problem during
several trials we have made for this presentation.

November 2011, Prague

The Dark Side

� As was already noted in [2], this
application may be used not only by
the legitimate device owner.
� Just anybody, who knows the respective

Gmail credentials can give it a try.

� Obviously, the Gmail credentials seems
to be quite “magic”.
� And that is just the beginning…

November 2011, Prague

The Screen (Un)Lock At Work

� Let us
assume that
the device
display is
locked by a
PIN that we
somehow
cannot
recall…

November 2011, Prague

Gmail Account Sidekick

� Let us assume we somehow can recall the
associated Gmail account login
name/password…

� So, we do the following (from any PC/Mac)
1. go to http://market.android.com
2. use the name/pwd to log in – note the same

credentials apply here as for that Gmail account
3. find the “Screen Lock Bypass” application and

let it install to the associated Android device

November 2011, Prague

Android Market Login

November 2011, Prague

Finding SLB Application

November 2011, Prague

Starting SLB Installation

November 2011, Prague

Telephone Number
– Who Cares?

� We should emphasize it is unnecessary to
know the telephone number of the target
Android device.

� We either do not need to know any other a-
priori identification of the device.

� This is because of Android Market offering
us the list of associated devices
automatically.
� All we have to do is to choose a device from the

list.

November 2011, Prague

Installation In Progress

November 2011, Prague

Meanwhile On the Device

� While the
application is
being installed,
there is no user
interaction
required at the
mobile device
side at all.

� The name of the
application
flashes briefly in
the status bar,
leaving on just a
tiny symbol of a
successful
installation.

November 2011, Prague

Recall, OTA = Over The Air

� Note the SLB application was installed through a
service channel that Google uses to silently
manage Android devices worldwide.
� This permanent data path is kept automatically by each

Android device linked to the Android Market portal.
� That means, we do not need to tweak the mobile phone in

any way to start downloading.
� It may be resting on a table as well as in somebody’s

pocket – just in any place with GSM/UMTS service
coverage.

� The display does not have to be turned on before the
installation starts.

� Well, this all really is a silent service…

November 2011, Prague

Hands-Off Application Startup

� So, we have downloaded the (pirate)
application on the Android device.

� The question is, however, how to
make this code run?
� Obviously, we cannot do that manually,

since the screen is locked.
� Unfortunately, the Android OS provides

several reliable ways on how to do that.

November 2011, Prague

Android Broadcast Receiver

� This is an application component [4]
responsible for inter-process communication
based on broadcast Intent mechanism.
� Usually, developers use a BrodcastReceiver

derivatives to hook up for asynchronous system
events like:
� android.provider.Telephony.SMS_RECEIVED

� android.net.conn.CONNECTIVITY_CHANGE

� android.intent.action.PHONE_STATE

� etc.

November 2011, Prague

BroadcastReceiver Setup

� To register a BroadcastReceiver
component, it suffices to list it in the
respective AndroidManifest.xml.
� This xml file is stored in the application package

and it gets processed automatically during the
application installation [5].

� Therefore, no single code instruction of our
application needs to be run to hook up for a
particular broadcast Intent.

November 2011, Prague

Registration Example

� Remember – it is all done in a package
configuration file.
� We do not need to run our code to register

for a broadcast Intent.
…

<receiver android:name=".SniffReceiver">

<intent-filter android:priority="256">

<action android:name="android.provider.Telephony.SMS _RECEIVED"/>

</intent-filter>

</receiver>

…

November 2011, Prague

Once Upon A Broadcast…

� When the particular broadcast is fired, the
Android operating system invokes those
registered receivers.

� This way our onReceive() method gets
called and – yes, we have got it – our
application code is up and running!
� Actually, it is a bit complicated when it comes to

the order of calling these receivers and possible
event cancellation, but this is not important for
use here.

November 2011, Prague

Back To SLB

� The Screen Lock Bypass, in particular,
registers to the following broadcasts:
� android.intent.action.PACKAGE_ADDED

� Triggers when a new package is installed.
� android.intent.action.BOOT_COMPLETED

� Triggers after finishing OS boot and startup
procedures.

November 2011, Prague

Two Ways to Unlock

� According to the aforementioned events,
there are basically two ways on how to
trigger SLB activity.

1. To install just another application package from
the Android Market in the same way as we did
for SLB itself.

2. To switch off/on the device, hence triggering the
BOOT_COMPLETED.

� We have verified both ways worked well in
our experimental setup.

November 2011, Prague

Going the First Way

� It really does not matter what application we choose.
� Important is just the final event that triggers our onReceive().

November 2011, Prague

Installing Dummy Application

November 2011, Prague

Installation In Progress

November 2011, Prague

Having Finished Installation

� Successful
installation
triggers
PACKAGE_ADDED.

� This in turn
starts the SLB
trap.

� Suddenly, the
screen lock
disappears…

November 2011, Prague

Possibly

� Well, we can
also enjoy
playing Fruit
Ninja.

� But we do
not have to.

� Just for
fun…

November 2011, Prague

Remember… (regarding SLB)

� We have downloaded an application package on
the Android device.

� We have granted any user permissions we needed
to that package.

� We have run a code of that package.
� We did not need to directly operate with the mobile

device in any way.
� The only thing we needed was an internet access

and a valid login name/password for the associated
Gmail account!

November 2011, Prague

Working The Other Way

� By simply switching
off/on the device,
we can trigger
BOOT_COMPLETED.

� This again runs a
SLB code.

� Again, the screen
lock disappears
happily…

November 2011, Prague

Remember Again

� The only thing we needed was an internet
access and a valid login name/password
for the associated Gmail account!

� Well, this time we used the power off/on switch.
� The attacker, however:

1. Can use the former approach using a dummy package
installation.

2. Can just wait until users “recycle” their devices by
themselves.

November 2011, Prague

Access Rights Revisited

� The Android operating system relies mainly on
user-granted permissions [6].

� During the application installation, the user is asked
whether to allow or deny permissions required by
the particular AndroidManifest.xml [5].
� Well, this model itself is quite questionable as users may

not be fully aware of the possible impact.
� Furthermore, it is especially non-trivial to discover the risk

of various permission synergy effects.
� Anyway, this is not the topic we want to address here.

November 2011, Prague

User-Granted Permissions
Limits

� We should note that there are some privileges that
cannot be granted even by explicit user
confirmation.
� For instance, it is not possible to directly grant root access

to the underlying Embedded Linux core.
� With user-granted privileges, we can, however, run a

possible root exploit…

� On the other hand, the power of user-granted
permissions is still considerable.
� For instance, permissions needed by an SMS sniffer can

be fully granted this way.

November 2011, Prague

Let Us Experiment

� To see permission granting process at work,
we can try installing SLB directly from the
Android Market application running on the
particular Android device.
� Well, this does not make a sense, but we do this

for another purpose.
� We want to demonstrate how the user-granted

permission mechanism works.

November 2011, Prague

Illustrative Screenshots

November 2011, Prague

As Bad As It Looks

� Well, but when we installed SLB through the
web interface, we did not need to grant
these permissions. Or did we?
� We did, but that time it was granted through the

web interface instead (cf. the former
screenshots).

� Does it really mean…?!
� Unfortunately, yes.
� Provided we have respective Gmail credentials,

we can choose any application form the Market,
give it any user-granted permission, send it to
the victim’s device, and run it!

November 2011, Prague

Cross-Infection Highway

� Time to time, users log to their e-mail accounts from
“ordinary” computers, too.
� What about if that PC/Mac is infected by a malware that

steals Gmail login name/password?
� The conclusion is immediate – such a malware can

instantly spread to the associated Android device.
� There is no need for any further user cooperation!

� This all in fact effectively breaks those popular SMS-based
two-factor authentication schemes…

November 2011, Prague

Conclusion

� Provided the way Android ecosystem is
currently managed, the following is true:
� Compromised Gmail account implies

compromised associated Android device.
� This opens up a whole highway for malware

cross-infection from PC/Mac to Android mobile.
� Furthermore, this signalizes the emerging end of

the two-factor mobile-based authentication as
we know it…

November 2011, Prague

Thank You For Attention

Tomáš Rosa, Ph.D.
http://crypto.hyperlink.cz

November 2011, Prague

References

1. http://thomascannon.net/blog/2011/02/android-lock-screen-bypass/
2. Hoog, A.: Android Forensics – Investigation, Analysis and Mobile

Security for Google Android, Elsevier, 2011
3. https://market.android.com/details?id=se.curity.android.screenlockb

ypass
4. http://developer.android.com/reference/android/content/BroadcastR

eceiver.html
5. http://developer.android.com/guide/topics/manifest/manifest-

intro.html
6. http://developer.android.com/guide/topics/security/security.html

