The Decline and Dawn of Two-Factor Authentication a Smart Phones

Tomas Rosa

tomas. rosa@b. cz

Raiffeisenbank, a.s.
Hvézdova 1716/2b, 140 78 Praha 4

Abstract

In this paper, we focus on two-factor authentigatitethods employing smart phones. Regarding thigopm, it

is well-known there are several risks that shallevaluated carefully when designing such applicatidt

actually turns out this situation probably signatizan emerging fall of the two-factor authenticatis we know
it, for instance, from certain contemporary bankamplications. Smart phones, on the other handjigeonot

only new threats and vulnerabilities. They alsonise to deliver an excellent mix of computationaver, rich

peripheral devices, and amazing applications figfiot the client’'s palm. After having successfullastered this
part of mobile devices evolution, we can hope maeawn of the two-factor authentication as wealriee

1 Introduction

When it comes to an authentication of a subject. @.bank client) or even a message originatediastbject
(e.g. payment order issued), there are three welvk factors that the verifier (e.g. the bank) oam to assure
itself about the subject identity. These factoes arhat the subjednhows(password, PIN, etc.), what the subject
has(smart card, smart phone, etc.), and what theestibj(fingerprint, retina scan, etc.) [32].

By carefully combining several authentication fasttogether, we can get two- or even three-faatbemes. It
is widely believed that the more factors we useltbter assurance of the subject identity we hbawvéanking
area, two-factor authentication schemes becamead® Standard. Such schemes usually combine firdt a
second factor from the aforementioned list. Thaamseclients are authenticated by what they know veimat
they have. In practice, the first factor is usualfya form of PIN or password that the client typfes instance,
into a web-based internet banking application. $eeond factor is usually of a form of mobile phahat is
known to be able to receive short messages dird¢otadparticular mobile phone number. During autication
procedure, the bank generates a one-time pass®did)(and sends it via Short Messages Service (SMBat
particular cell phone number. If the client is alideretype this OTP into the web application, tleeand
authentication factor is regarded as successfeliified (i.e. the client has the mobile phone).

Security of the aforementioned scenario of twodaeuthentication involving the mobile phone and tteb-
based application relies on several assumptions. @rthem requires it is practically hard for ataeker to
compromise the operating environment of both théiqadar phone and the web browser where the cjant of
the serving application runs. In nowadays, howewar,are witnessing two important changes, bothhefrt
being connected with the increasing computationalgy of mobile devices. We see a fast convergehpalm
computers and mobile phones, the result of whicbsisally referred to as a smart phone. Smart phanes
becoming fully capable of running standard web-Haapplications like mobile banking or even company
application intranets. Therefore, instead of twdejpendent operating environments, the attacker sné®d
compromise only one — the smart phone. Furthermeeeeral research studies hand in hand with pedctic
observations show clearly that such a compromisquite feasible for a reasonably skilled and ma&da
attacker [9], [12], [14], [17], [24], [38], [43].1BmM a purely theoretic viewpoint, we are still hayia two-factor
authentication scheme. Its security is, howevensitierably weaken, since that cornerstone indepeyde
assumption does no longer apply. Apparently, wdl slxpect a fall of the two-factor authenticatios\ae know

it in the very near future.

Smart phones, on the other hand, do not providg oel vulnerabilities and threats. They also prentis
deliver an excellent mix of computational powerripleeral devices, and applications right into thiert hand.
After studying this phenomenon for a while, we camclude there are still ways on how to provide-factor
authentication with an adequate level of secuAtywe need is to be prepared to withdraw the autrigesign
approach and to devise a brand new paradigm alfrestthe scratch. After having successfully mastettes
evolution, we can hope to see a dawn of the twtefaauthentication as we need it. Of course, itdsan easy
way, since there is a huge amount of several aspeaare about. Even worse, we can see a neeifious

INFORMATION SECURITY SUMMIT 2012 1

supporting devices that are yet to be developedth®mther hand, we believe this is a doable advergnd we
hope this article provides certain light and enagirg guidance on its whole beginning.

In the following text, we use both the terms usat alient interchangeably to refer to a subjectovhidentity or
message is being authenticated. We define basielnobthree threats that are connected with snfashes. For
each threat, we then present a typical effective avehow the risk can be mitigated. We do not sttivimprove
the smart phone platform itself here. We basicaltgept the particular threat can occur and we bkefarc
possible ways on how to mitigate the risk. To dat tie mainly employ techniques of distributed iropIPIN
verification, redundancy-less encryption schemetgnisive explicit sensitive data wiping, and fipalve also
touch approaching technologies such as TrustZomd;, TCAP/DPA, and NFC-based authentication tokens
bearing an independent display and simple keybd&alexamine this topic from the sole viewpointhod tode
that is running on the particular smart phone devéince we believe that this is the part that esethe great
attention now. To explain the countermeasures, $& aasy-to-follow examples illustrating what campgden
when something in our design goes wrong. Our aito explain the main principles while omitting umuortant
technical details for the sake of readability.

For the sake of completeness, we note we are segridr a two-factor authentication based on what ¢lient
knowsand what the clienhas To minimize our assumption on how far a genelight is able to memorize
random strings, we will assume the first factoaidecimal PIN of at least 4 digits. The seconddiais then —
naturally — the particular hardware device itselpresented by a device secret key. Regarding theydar
mobile platforms, we are focused on the two mostuter and promising operating systems, i.e. Godgldroid
and Apple iOS. These platforms are used just fargles, since the main results presented bellovgemeral.
Furthermore, our examples will be also relatedsiogitwo-factor authentication in the banking area.

The rest of this paper is organized as followsP#mt 2, we introduce a simple threat model of thiheeats that
are connected with smart phones. In Parts 3, 45ame examine an example approach on how we csigrde
plausible two-factor authentication when facing theeats defined before. Part 6 presents an oweroe
expected technology evolution that can provide irfat security tools in a near feature. Finally,ce@clude in
Part 7.

2 Smart Phone Threat Model

The key part of understanding all those risks ingpolsy the smart phone platform is devising a propedel of
emerging threats. We present a model that we leelgedescriptive enough while keeping things silly easy to
understand even for people outside the security. 8rkis is important to be able to discuss thiscteyth e.g.
our business-oriented colleagues.

Definition: Let the After-Theft Attack (ATA) be any attackingrario that assumes the attacker has unlimited
physical access to the user’'s smart phone.

The name of this approach comes from the usuatsitu which it can occur in, that is after a phgsidevice
robbery. It is well-known paradigm in informatioacsirity saying the particular piece of HW stolenssially not
the most precious thing the victim has lost in sacltase. If the smart phone was running, for img&tan
incorrectly designed mobile banking applicatiore tient should be afraid of loosing much more nyotten
just the price of a new mobile device. Our tasloimitigate the risk, so, ideally, the price of thebile hardware
is the total loss in such a case.

Definition: Let the File-Skimming Attack (FSA) be any attacldognario that assumes the attacker is able to
get a full copy of the data file container operatsdthe authentication application at some time.

Definition: Let the On-the-Fly Attack (OFA) be any attackingrerio that assumes the attacker is able to
launch their privileged code running on the usearsart phone transparently during the time the lewite user
performs the authentication procedure. The termvif@ged means that the code attains at least theesaghts

as the authentication process including the abtfitystablish and use a data connection with thecaer.

To play a bit with the model given above, we shosimaple reasoning about the mutual relations anfong,
FSA, and OFA. The primary distinction in betweensddnd FSA is that in the later scenario we do mesgribe
the unlimited physical access to the smart phoS& #hreat can occur, for instance, when the attastaals a
weak-protected backup copy of the user’s phone. dsifé usually leads to stronger assumptions, sitiae
application container is often just one out of mdata items the attacker can get in ATA. Evenéféhis a HW-
assisted encryption of the mobile device filesysttha after-theft attack assumption is usuallyeast as strong

2 INFORMATION SECURITY SUMMIT 2012

as the file-skimming attack model [43]. For thegmse of our simple model, we will, therefore, cdesithat by
defeating ATA we shall have automatically defed&&ah as well.

When evaluating the ATA risk, it is important taliee that, unfortunately, there are a lot of wekcribed and
precisely designed forensics techniques that shareame basic objective — to quickly get as mechassible
data out of a mobile phone of an unknown holdel,[22], [43]. These techniques also include HW lpng
methods that allow to physically connect to the-molatile Flash memory of the device and to dunspwhole
content [6]. By carefully profiing JTAG probes awmttion [7] together with the scanning software fioe
particular smart phone device processor (base@weral sample test devices), the attacker can,tsoe® hope
to be able to physically dump even the contenhefuolatile RAM before its data los due to a powofr RAM
memory samples may also be easily accessible foaléed rooted (Android) [22] or jailbroken (I0S)1], [27],
[43] devices. This is another unfortunate synergtwieen a relatively honest initiative (to bring mmor
unrestricted apps to the mobile) and criminalsofteckly rip-off sensitive user data) [14]. On thiher hand, it
should be noted that those weaknesses exploitesldorOS jailbreaking [17], [27], are already the&re and can
be exploited independently on whether there isjaitlyreaking initiative or not.

Looking from other perspective, there already arersics tools and approaches that work even @ettievices
with encrypted Flash memory content [4], [43]. Appdly, the after-theft attack is really a powertateat.
Similarly to the situation with e.g. payment camsuse, we can expect attacker groups will speeiaia
performing various kinds of ATA as soon as there emough promising potential targets (e.g. mobéeking
applications) in widespread use. Therefore, thik o ATA shall be evaluated really carefully durirhe
application design.

Furthermore, it is easy to see that the abilitymtount on-the-fly attack is a stronger assumpticantfile-
skimming attack. In other words, if an attackealde to succeed with FSA approach then they woutdeed
with OFA as well. To do so the attacker would siynpduce OFA scenario to FSA and then follow thenfer
approach. In terms of logic implication, the akilib succeed with FSA implies the ability to suat@éth OFA.
Therefore, simple logic reasoning says that if \weeh(somehow) designed a successful countermeaganest
OFA, we must have defeated FSA as well. For thésaning, it is important to note that we are ngingr to
prevent the particular threat to happen, since whatld require improving the smart phone platfotself. We
actually accept it may happen and we strive togaié the risk.

We have seen defeating ATA or OFA also guaranté&®s mitigation. The relationship in between ATA and
OFA is, however, not such simple. It may be temptm regard OFA as a stronger assumption than AA,
this would be dangerously misleading. The distorcis that the physical access to the smart phanalissolve
certain countermeasures that worked well under G&#nario. Several parts of the attacked environmniexit
were by principle inaccessible under the OFA sdemaay then suddenly become accessible under A@ditg

to a successful attack scenario [43]. The OFA oarthe other hand, benefit by capturing certainhanafly data
elements like client’s PIN, secret key derivativets, which may be by principle inaccessible inezice that is
no longer operated by its legitimate user.

Therefore, we shall always investigate both ATA &f€A independently during the application desidgnve are
aiming for the really highest security, we shalhsider even a deliberate combination of ATA and Qéénoted

as ATA [OFA. In the worst case scenario, attackers cowdage to spread a malware infection across a large
amount of mobile handsets. This code would behaterding to OFA scenario capturing all interestifzga in

the on-the-fly style. Later on, when such mobilemd gets stolen, it (with a high probability) cansasome data
that were already carefully collected under OFAe Hitacker would then apply ATA to finally gain sieedata
and exploit them for an attack.

Of course, such a reasoning will not bring us aditiacountermeasure in itself. It can, however, rather

helpful when engineering our security measuresuiokly verify their synergy effects. For instandfeywe know

we have already solved OFA resistance by e.g. usmgtZone processor mode (cf. Part 6), then wexalo
longer need to investigate FSA separately — it rhase been already solved. On the other hand, seekalow

that, despite the effort of employing such soptégéd technique, we still have to verify ATA resiste

independently, since there is no that simple syneffgct.

3 FSA Risk Mitigation

Let us recall two important observations preseritedPart 2: We automatically defeat FSA by previgusl
mitigating ATA or OFA. Furthermore, ATA is such imgtant threat that it has to be defeated anywagnEfwe
already solved FSA or OFA resistance, we still neederify ATA resistance independently. Basingtbase

INFORMATION SECURITY SUMMIT 2012 3

observations, we will not discuss FSA countermezssgeparately. We encourage the reader to directigult
the countermeasures against ATA as the minimumingmgents instead. We can reasonable believe thiseis
right way to approach two-factor authenticationigie$or smart phones.

4 ATA Risk Mitigation

4.1 What to Avoid

Recall we are searching for a two-factor authetiboascheme, where first factor is client's PIN ahd second
factor is a device master key that represents ithentity” of the device itself. The PIN as well t® device
master key must be set up during a personalizgf@se. Since there is an overwhelming amount dfiples
personalization scenarios, each of them being motess correct, we omit discussion of this procechere. It
should be obvious for any reasonably skilled depel@mn how to do that. Instead, we focus on cepiedperties
of the authentication mechanism itself, which wpreven to be no-obvious or neglected even by eapéct
skilled architects [24].

We start by a simple example of a typical naivel@mgntation that can be, unfortunately, really fbun
practice. Let us assume there is a bank using R&&¢b authentication scheme with a public key ceaté of
the client registered at the bank while the pridadg is stored on the mobile device encrypted leyRIN. Let us
further assume that the programmer strived to pvhe maximum protection for the private key, ke t
encryption scheme involves not only client PIN blso several system-level keys. For an attackekingunder
ATA, it follows, however, from [43], [44] we mustsaume the attacker can directly defeat any systemd-|
encryption keys. Therefore, the only unknown fa &TA attacker remains the client PIN.

The natural question in this situation is: Can wecessfully use a brute force to discover the PIN@ answer is
obvious: Yes, of course! We may hear several argtenghy brute force is allegedly impossible hereled us
review them. Certain developers argue that them FIN try counter in the mobile application. Butlk an
obstacle would be only relevant if the attacker wsisg the user interface of the mobile applicatorieduce
the PIN. This is, however, non-sense, since we msstime the ATA attacker can have a direct acoeet
PIN-encrypted key store data. Therefore, the bfotee procedure goes totally around the mobile iapbn

user interface, so any PIN try counter is clearbffiective.

The only one question is how to confirm whether particular PIN guess (starting by 0000 and cougptia
correct or not. Actually, there are two possit@lti Since there is a local PIN try counter, it hagpen there is
some kind of PIN fingerprint that is used by thelagation to decide whether the value entered leyuber is
valid or not. In the second case, there would lm@rabination of the local PIN try counter with atdisuted
implicit PIN verification described bellow, so tleeis no direct local template for the PIN verifioat We can,
however, still find enouglatentPIN fingerprints for the brute force (cf. the flling discussion).

More educated developer may argue that there iNarfp counter, but this time it is at the bankesidt would

work like this: The mobile application uses whatePdN the user types in to decrypt the private Keyen,

whatever value of the private key is obtaineds ised in the authentication protocol to try tchaaticate to the
bank. If the authentication succeeds, the PINssrmgd to be valid. Otherwise, it is assumed tanberiect and
the PIN try counter is decreased at the bank gideve will see, this is the whole idea of the dimtted implicit

PIN verification which — in itself — is correct ahijhly desirable. Unfortunately, the implementataf this idea
is totally wrong here due to the cryptographic nagitm chosen!

Even if we do not store any other fingerprint of f2IN, the RSA private key cryptogram in the keyesttself is
enough to mount the brute force attack locally. Phiacipal idea to understand here iplaintext redundancy
Recall, in this case, the plaintext of the PIN-loasacryption is the RSA private key itself. Lookiimgo [37], it

is easy to see there is a huge amount of redundantliye private key encoding. We can see the ASN.1
description on the following list:

RSAPri vat eKey ::= SEQUENCE {
ver si on Version,
nodul us I NTEGER, -- n
publ i cExponent | NTEGER, -- e
privat eExponent | NTEGER, -- d
primel INTEGER, -- p
prime2 | NTEGER, --
exponent1 I NTEGER, -- d nmod (p-1)

4 INFORMATION SECURITY SUMMIT 2012

exponent 2 I NTEGER, -- d nod (g-1)
coefficient INTEGER, -- (inverse of q) nmod p
ot her Pri mel nfos O her Pri mel nfos OPTI ONAL

}

To confirm whether the particular PIN guess is eorror not, it may actually suffice to verify thos&N.1
formatting rules are fulfilled (under particularcenling scheme used — BER, DER, etc.) [11]. It mehes
resulting plaintext for the correct PIN guess shaljin bySEQUENCE containing all those particular elementary
items.

Even if the programmer decided to omit those ASKbmatting tags, or if we want yet-better checking
mechanism, we can use the sole algebraic propeftibe RSA key itself. If we verify e.g. that ftre decrypted
private keys it holds:

p andq are primes of expected lengths,
coefficientqgmodp = 1,
then we can be practically certain the PIN gueaditey to such decryption is correct.

We have shown that even if we strip the RSA dowth&éobone, we cannot resist local brute force kttacthe
PIN under the after-theft (or even file-skimmingitask assumption. The problem here is thlaintext
redundancywhich guarantees the possibility to distinguishrect and incorrect PIN guesses [32]. Such a
redundancy must be avoided and it is quite harthab for RSA. Some techniques are known (e.g. dcesh
random seed and re-generate the whole RSA keyesfiylhbut they lead to a painfully inefficient cedt the
mobile device.

4.2 Distributed Implicit PIN Verification

Let us now summarize the requirements for the R#Nfigation scheme that are necessary to defeat-tfeft
attack:

1. Distributed implicit PIN verification: At the molal device, the authentication scheme computes certai
authentication OTP (one-time password) for eachesadly PIN value entered. The bank side is theniegie
to decide whether the OTP is accepted or not. TNevBlue is regarded as the correct one only ifGid?
is accepted by the bank. There is a PIN try couateéhe bank (!) side that prevents brute forcack# on
PIN.

2. On the mobile device, there are no local direahdirect PIN fingerprints that might allow succeddbcal
brute force attack on the PIN.

In this way, we get a distributed implicit PIN Maration with no local fingerprints, which is theek to
successfully defeat ATA style crime. Let us agaimpbasize it must be verified really carefully wresttthe
second requirement is fulfilled. If we need to tise PIN to encrypt certain key, for instance, f@HP [23] or
TOTP [42], it must be ensured there is no redungamahe key (which plays the role of plaintext éethat
could be exploited as a latent PIN fingerprint.thie previous part, we have already seen that RSA kee
highly inconvenient for this purpose. We shall, leeer, pay attention also to e.g. 3DES key parity, laitc. [32].
Furthermore, it is important to realize that eviem © TP value itself (even the already used oneye@enough
information to successfully mount the PIN-guesadckit Therefore, these values shall be carefullyediput of
the mobile device memory as soon as possible. Edlyeove shall not store OTP values in non-votatil
memory!

Furthermore, we shall not place the PIN used ferttto-factor authentication discussed here to besttme as
the device-PIN that may be used to unlock the reatbévice screen. It follows from [4], [43] thatgtparticular
value can be successfully brute-forced under ATAuamption. This vulnerability is rooted directly the

particular operating system design and cannot Ipeawned by our application. The independent devasspord

lock can be, on the other hand, used to protecsebend factor, i.e. the device master key. Ifadents do not
mind managing two secrets (i.e. the authenticaBtid and the device-unlock password) it can imprtwe

overall security significantly.

INFORMATION SECURITY SUMMIT 2012 5

4.3 DoS Prevention — Partial OTP Verification

The requirements given in the previous part aresgary to prevent ATA. They are, however, not sigffit to
prevent both ATA and denial-of-service (DoS) ateacWe have already seen that there must be a BIN tr
counter at the bank side that limits PIN-guesschttstrategy. Furthermore, this limitation must beite
aggressive, provided we have only 4-digit long R&lue offering 10000 possible values.

Unfortunately, trivial implementation of the PINytcounter mechanism opens the door for DoS. Byepdihg
PIN-guess scenario, the attacker could easily bidiekt's access to their bank account. To preberth ATA
and DoS, we need to be able to distinguish theviailg situations:

1. the OTP was generated by somebody who alreadydtassto the original device master key, but tié Pl
value was incorrect,

2. the OTP was generated by somebody who does notdtaess to the device master key.

In case one, we assume this is a PIN guessingkattacve apply the PIN try counter together witipraypriate
login blocking/delaying policy. In the second casewever, we assume this is probably DoS attackvesndo

not block the account. We shall, however, slow downresponse delay a bit anyway. This delay isetable to
estimate the upper abound of DoS success ratediat@tote this delay could be in principle set ipeledently on
a delay used when the client makes a typo in Piteswe really can distinguish these two casesfiect

device key vs. correct device key with wrong PI@j the other hand, keeping this delay reasonabll samd

the same for both cases simplifies the implemesriationsiderably. Anyway, for our illustrative essites, we
assume there is at least two-second delay aftaitiagf OTP verification. Furthermore, we shall algsure the
authentication query cannot be restarted untiptirticular reply delay has already elapsed.

From the mathematical viewpoint, it is reasonablei¢w the OTP code as a communication channel ieatingat
in fact conveys two verification codes. In partal

OTP=DVCO PVC

whereDVC is a device verification code which purpose isvéuify the code was computed using the correct
device master keyPVC stands for a PIN verification code which purpcseoi verify the PIN value itself. The
operatord denotes any reasonable way of embedding thosectwles into one codeword. In the simplest
scenario, it may be a straightforward concatenatifoteecimal strings. At the bank side, we firstifyethe DVC
part while thePVCis verified (and PIN try counter is applied) oiflthe formerDVC check succeeded.

In the aforementioned OTP scheme, there are tragisppand easy-to-understand rules for choo&IME and
PVClengths. The first one must limit DoS attack &gyt If we assume there is at least two secondsy cdsdter
an incorrecDVC, thenDVC of six digits (and longer) can provide adequatgqution. Of course, we shall still
monitor our clients’ activity to be able to detsastained login attempts.

The size oPVC, on the other hand, shall protect the accountagain attacker that has already managed getting
the device master key (e.g. by ATA approach).PBaC shall be at least 4 digits long. The limiting farcts the
overall OTP length which should conform to the joaittr usability criteria — e.g. 12 digits long OBBems to

be near the upper acceptance limit. The situatepedds, of course, on whether we are designingral-stione
authentication token where clients are supposealso retype their OTPs into e.g. internet bankimg it in
voice conversations, etc., or whether the OTP ésl uisternally and automatically by the mobile aggtion only.

In the second case, the upper limit is considerhigjiger.

The construction and justification of particular ®generation algorithm is beyond the scope ofdhésviewing
paper. To give at least a rough idea, we may censising two HOTP [23] codes. The first o®/C) would be
based on the device master key only, while the rsbame PVC) would also reflect the client's PIN. The
integrity check provided bypVC shall also cover th®VC, therefore guarantying certain kind of whole OTP
integrity. The operator] would be then a simple concatenation. Note thatRiN dependency of tHeVC part
can also be indirect in such a way that the secoaster key used for this particular HOTP computatian be
directly protected under PIN-based encryption. @frse, following our discussion above, we must enshere

is no usable plaintext redundancy in this key then.

4.4 Ephemeral Data Wiping Issues

We have emphasized we shall not store any direttdarect PIN fingerprints to prevent brute foragaaks on
PIN under after-theft attack scenario. Recall #i& includes eventual fingerprints left in volatRAM, since

6 INFORMATION SECURITY SUMMIT 2012

we shall admit that by using JTAG probes, by expigithe behaviour of rooted or jailbroken phor@sgven by
abusing a vulnerability of a honest applicationtatied to e.g. monitor peripheral interfaces acdbésgo the
attacker (cf., for instance, Apple External Accegdoamework [26]), the ATA-style attacker can dbt&AM

snapshots even for passcode-protected devices[fR], Furthermore, we have already warned thesenpial
fingerprints also embrace OTP values generatedsimguhe PIN, no matter whether such OTP was ajreadd
or whether it remains yet-unused by the client.

It follows that:
1. OTPs shall not be stored in non-volatile memory,
2. OTPs shall be wiped out of RAM as soon as possible.

Although this may seem as trivial requirements b@yg the author has already met several practiGahples
showing the reality may actually be quite diffetefli$ an example, let us consider the referenceemehtation

of the HOTP scheme listed in RFC 4226 [23]. Theesalso applies to the TOTP scheme according RF@ 623
[42]. To pad the resulted OTP by zeros from thg thé following fragment of Java code is employed:

result = Integer.toString(otp);

while (result.length() < digits) {
result = "0" + result;

}

return result;

Ther esul t is holding a reference faava. | ang. St ri ng. The function of this piece of code is obvious and
simple: After having converted the OTP from intégralue into a string, it appends padding zerog{byone)
from left until the resulting code has at least fine-specified amount of digits. The good pointifeé whole
implementation is that it can be easily ported twl¥id and we may reasonably assume some progranwiler
already do that. What is, however, a bit worséédd the code is seriously flawed!

To fully understand where the issue is, it woulduiee a deeper excurse into Java bytecode andualnalso
Dalvik virtual machine executable. Long story shtre first pitfall is the unfortunate choice ofngSt ri ng to
hold the resulting OTP. In Java, eve8yri ng instance is by-standard immutable object, so tpewsuch
variable out of memory requires at least invocatidnlava reflection APl which may not always praevid
desired result. Secondly, the concatenation comnsdledtly allocates two extra objects that remaiddan
behind those simple “plus” and “equals” operatditse first allocation creatgsava. | ang. St ri ngBuf f er
to perform the concatenation. The second allocati@atesSt ri ng object to hold the new stringesul t
while overwriting the reference pointing to thesul t of the previous iteration. Therefore, with eactozgigit
appended, there is at least one copy of the semgitirt of the OTP left in volatile RAM in such aywve do not
have any reference pointing to them, so we carwen ¢y to wipe this data out! We omit the implenadion-
dependent elaboration on how many OTP copies aetlgxcreated for the sake of simplicity. Anywagr the
attacker, even one copy is far enough.

It is an easy exercise for even beginner-level batk show that these data are already availabla memory
dumps. In Figure 1, we can see a memory dump froearaple application running on Google Nexus S
19023XXKF1 with Android version 2.3.6 build GRK39Fhose sensitive OTP copies are clearly markeds- it
the “755224” value according to the test vectostetl in [23]. We have atrtificially shortened thégoral OTP
integer during the computation to expose the pagdimction in action. It should be emphasized ttiet
particular Dalvik memory snap was done several fiafter the user has already “closed” this demdicgifon.

It was observed that if there is enough resourtesAndroid usually keeps the hosting Linux procefssach
“closed” application loaded for quite a long tinie ¢rder of days). This should probably improvetstg timing
when the application is re-started. From the usesgective, however, the application is simply dofleis
shows another important motivation to do sensitiata wiping properly, since the client may not biyfaware
of the after-theft attack risk. Note that simil&krapplies for iOS as well. Actually, Apple dedarclearly that:
“The system keeps suspended apps in memory fongsdopossible, removing them only when the amafunt
free memory gets loWj31]. Again, the reason is to improve applicatlannch time significantly. Unfortunately,
attacker’s chance to gain sensitive data from lersgohone is improved significantly as well.

INFORMATION SECURITY SUMMIT 2012 7

800

. R N,

-
Sawe

Copy Cut

E| padding_leak_heap3.bin

Paste Undo Redo

Go To Offset

Find (Hex search)

12574
512595
512566
512804
B12BFZ
Blzeia
B1262E
B1ze4C
B12664
B12688
B126A6
B1z604
B126EZ
B1z708
51271E
B1273C
B12754
B12778
12796
512764
B127D2
B127F8
B1250E
B1282C
B1z544
B12868
B12586
B125A4
B1zBC2
B1Z5ER
B1Z8FE

Caamar

Ba @8 36 60
ZE B8 &C 8o
Ba @8 75 ES
3B B8 B8 eo
6C B8 61 B8
5@ 15 81 48
b L0 o 2

Bl 48 76 45
17 eo B8 eo
74 BB 72 B0
1B @8 B8 6o
Ba 48 88 6o
5@ 15 81 48
6E BB 67 A6
Ba g8 8a eg
Bl 48 88 6o
Ba g8 8a eg
0@ @8 55 B7
Ba g8 8a eg
Bl 48 38 69
11 86 68 B8
B0a 68 8a eg
Ba g8 8a eg
51 48 81 88
38 69 Ba eo
[al:}

B8 B8 g Bg
Ba g8 83 eg
Ba g8 8a eg
Ba g8 Da 7e

LR

BE B8 5B 15 61 48 60 B0 0B 69 18 08 60 B8 B0 68
61 B8 6E BB 67 B8 ZE B8 4F B9 6Z 0B 64 BA 65 68
BE 40 B8 B0 B8 B8 DS BS 51 48 6A 7H 67 &5 B0 68
B@ 15 81 40 B8 ©8 60 68 11 69 B0 08 B0 B8 6O 68
G6E B8 67 B0 ZE B8 49 B0 6FE B9 74 0@ 65 B8 67 68
0E B0 B8 B0 BE OB D0 B0 DB B0 BEO DB B0 BA PO 68
32 B8 34 B0 BB 08 B0 B0 08 B9 23 08 B9 B8 75 ES
0E 65 08 B8 B0 B8 00 BO B8 23 68 B8 B0
40 AZ BB B0 BB B8 17 B0 08 69 B0 08 B9 B8 4B 68
BE B0 B8 B0 64 BB 61 BB 76 B9 61 BB ZE B8 6C 68
69 B8 6E BB 67 B8 42 BB 7 B9 65 DA 6C B8 o4 68
F& G0 81 40 B8 B8 B0 88 53 E7 51 48 61 68 60 68
Ba B9 88 B7 51 48 65 36 3E 47 00 08 60 88 10 68
BE B0 B8 B0 16 OB B0 B0 DB B9 B0 0B 64 BA 6l 68
ZE BB 53 BB 74 B8 72 BA 69 B8 GE 68 67 68 66 68
18 19 81 48 36 ©8 60 B0 30 60 B0 08 £1 B8 6O 68
Ba B8 11 B0 B8 £8 00 68 08
0E B0 B8 B0 B0 OB B0 B0 D BP B DA BD BB BB 8O
51 40 88 B0 BB OB B0 B0 DA B9 87 08 B9 6O B0 68
ES E7 51 40 61 ©8 00 B0 B3 60 B0 08 23 B8 B0 68
B8 B9 30 B0 BB 08 91 B0 0B B9 B0 D8 B9 B8 3B 68
68 86 B8
08 B0 B8 B0 BE BB B0 6O BB BB 23 DA BB BB 7S ES
BE B0 B8 B0 G5 OB D0 B0 DB B9 B0 0B 1B B8 B0 68
BE B9 89 B0 BB B8 23 B0 08 B9 75 ES 60 48 B0 68
Bl B0 B8 B0 BB OB B0 B8 3B 69 B0 0B 50 15 81 48
[al:}
BB B8 B8 BB 23 B8 BB BB Vo ES B2 48 B0 Ba Bo 6e
08 B0 B8 B0 BB OB 2B B0 08 B9 BB 21 61 48 B0 68
0E B0 B8 B0 B0 OB B0 B0 DB B9 B0 DB B0 BA B0 68
Bl 48 AB 6A B1 48 B0 B8 B8 B8 DF 97 DB 44 60 68

£ DM CA AR GT DR GG GR R4 G0 RS AR R G0 @6

BE B9 64 BB 61 B8 7o B8 61 B0
63 B0 74 D0 B8 B8 00 B8 23 60
Ba B9 11 B0 B8 B8 00 68 Ba B0
64 B0 61 BB 76 B8 ol B8 ZE B0
65 B8 72 D0 BB B8 33 68 08 60
s s
Ba 40 88 00 68 B8 10 Bo Bl 48
75 EG B8 40 B8 B8 00 68 50 Bo
Ba B9 58 15 61 48 00 68 Ba 60
61 B8 6E BB 67 B8 ZE B8 53 60
65 B8 7Z D0 B8 B8 00 68 Ba 60
B7 B0 88 00 23 B8 00 B8 75 ES
BE B0 88 00 B8 B8 3B 68 Ba 60
76 B0 61 BB ZE B8 oC B8 61 6o
68 86 23 B0 B8 B8 75 ES 66 46
BE B0 88 00 5B B8 00 68 5O 15
Ba e 6
23 B9 B8 BB Y5 ES BB 48 B8 60
Ba B0 1B 00 B8 B8 FS &8 81 40
75 EG B8 40 B8 B8 00 68 18 19
Ba B9 58 15 61 48 00 68 Ba 60
68 86 G0 B8 B0 B8 60
BE 40 B8 B0 B8 B8 ES B7 51 40
F& G0 81 40 B8 B8 08 68 75 BS
Ba B9 18 19 61 48 30 68 08 60
BE B0 88 00 11 B8 00 68 Ba 60
0E B0 B8 D0 B8 B8 00 68 Ba B0
75 BS 51 40 B8 B8 00 68 Ba 60
08 B0 84 D0 B8 B8 00 68 BA B0
23 B0 88 00 68 28 01 48 0a 60
a8 B0 45 00 B8 B8 50 48 B4 40

AR @G OR OC M R4 @G ARG G

Offset: 512624

Hex Little Endian Insert ASCI Selection: 1

Figure 1: Leakage from the reference implementatfddOTP.

The lesson learned tells us we shall be extrematgfal about using existing code fragments, dedpétiag
labelled as “reference implementations”. It is impat to understand the primary purpose of sudtreete code
is to provide test vectors for the particular cographic scheme, not to serve as a robust tampistast design.
Especially on Android, we shall consider implemegtthe most sensitive parts in native binary catig fo
avoid further issues inherently connected with@aebage-collected environment of Dalvik VM.

5 OFA Risk Mitigation

Let us first further precise the term “privilegedlde” used in the on-the-fly attack definition infP2 above. On
Android, for instance, we may consider a Linux @sxrunning with the same real and effective useasithe
application under the attack. Since Android segypitlicy is based on application sandboxing by rggvthem
separate user-ids [25], having the same user-mhaatically grants the attacking process the righthe victim
application.

Furthermore, since the victim application probadliyo uses some kind of data connection, we camestuat
attaining the user-id of e.g. general banking ajaitbn is sufficient to mount OFA (against this bqgtion)
according to the aforementioned definition. Whatriportant to realize here is that, contrary to own believe,
we are not calling for having a root access (uder-D) to the victim device. Of course, having thet access is
sufficient condition to mount OFA on Android, biis not a necessary assumption.

Regarding Android’s simple sandbox, bearing theesaser-id allows the attacking process to e.gy futice the
victim application. Since we may reasonably asstime a vast majority of such applications will batten in
Java compiled for the Dalvik Virtual Machine [29B5], the attacker can enjoy the comfort of thetuat
machine runtime support to inspect the code whitskihng for interesting ephemeral data variables FdN,
temporary key derivatives, one-time passwordssaation data, etc. On iOS, the escape from thebsandan
be more adventurous [5]. Anyway, it was alreadywsheeveral times that it is a doable task. Finatfiythe iOS
Darwin environment, the attacker can (besides rathassic binary hacks [33]) enjoy at least Android
comparable support provided by the Objective-Cinumtayer [3], [34], [43]. In this case, it is nomly possible
to freely inspect attributes and invoke methodsrdfitrary victim application objects — it is evensgible to
override their behavior at runtime. This makes ¢hpepular and strong hacking techniques based istinex

8 INFORMATION SECURITY SUMMIT 2012

code patching almost automatic and trivial. Itierefore, important to realize that the runtimeiemments of
both Android and iOS (i.e. the two major smart phoperating systems) make the attacker’s job iroththe-
fly attack considerably easier. Unfortunately, tisithe price paid for the comfort of applicatiorogrammers.
This, on the other hand, is not to say we shoutddraOFA by lowering programmer’s comfort.

Although we promised not to dig deeply into techhidetails in this paper, we should give at leasigh ideas
on how OFA can be mounted. The cornerstone priesipte code exploits and social engineering. Wethese
termcode exploifaccording to its well-known informal definitiomughly stating that it is any approach aimed at
abusing a vulnerability in the victim code to penfocertain attacking job (e.g. to execute unaueaticode,
escalate the privilege level, escape from a sandétmx). From the aforementioned elaboration ofil@ges
needed for OFA, it follows that these exploits need to be strictly focused on the operating syskemnel,
which is often silently assumed. It should be cliéas sufficient to find an exploitable weaknesght in the
victim application itself to achieve the appropgigtrivileges and hence to mount the OFA (on theesam
application). Important conclusion is that progragnsnof e.g. banking applications shall, therefoia, regard
code exploits as being solely problem of the oegasystem only, since it is their problem, too.sTfurther
emphasizes the necessity of proper penetration test

On Android, there is an interesting inter-processimunication phenomenon based on so-cahgehts[25].
Actually, the whole ecosystem of all applicationdules on a particular smart phone resembles ailitgd
system with ad hoc servers and clients. It was shdtis important to fully understand consequenaktthis
behavior in order to develop secure applications[2]. Basic survey of iOS vulnerabilities incind user-land
application vectors is given in [27]. In [9] andB]3 potential risk of Apple’s URL Schemes was dised, which
exposes certain similarities to the Androiditent danger noted above. Tletentsare, however, much more
general mechanism, so the attacking scenariosoaigderably broader.

Regarding the risk of exploits, we have to alsoentbtere can be obstacles with patch distributionboth

Android and iOS [14] platforms. The situation i€luhat we cannot ensure that each and every mplaittorm

that is conforming to the necessary operating syseguirements (and hence capable of running quiicaion)

is also patched properly. All we can do right n@mo hope that the situation will get better as rémhone
manufacturers fully recognize the risks connectath wheir passivity. In a worst case, we would nded
programmatically limit running our security-criticapplications on platforms and operating systensieas that
are known to be seriously vulnerable. We shall disase reliable patch management of our mobildiatpn

itself.

Social engineering is connected especially with Aneroid platform due to the unfortunate decisionl¢ave
privilege-granting process on the final user [124], [25]. It well known that users, when it contessecurity,
often do not do the right settlements. Some of teamply hope the risk management is not their contere,
some ones are too focused on having a new miraswdpplication, etc. The illusion of “universally thes”
security connected with the iOS platform can beydw®r, dangerous as well. It was already demomstrat
before, that it is practically feasible to pollutee App Storeby a malicious application [29]. Furthermore, in
[27], there are known iOS vulnerabilities documeénseich that to catch an infection it was enougtapoon a
wrong link in the Safari Mobile browser.

Regarding the power of OFA, it is obvious we canfadlyy defeat this threat by some miraculous desifthe
mobile application itself, since the attacker caa all that our application sees and operate aehn and every
attribute and method our application implements. ¥8e (and shall) enforce the best software engimger
practice to minimize risk of exploits in our ownd® but this is the far most point we can go they.wVe then
have to rely on the security of other applicatiomsning on the same smart phone as well as orpisating
system integrity and proper management of all shi§f by a generally inexperienced user. While thiperhaps
a doable job in a near time window (several yeasifnow), it is probably not an everlasting apploac

To unify our further approach, we use the ténaependent token generattar refer to a cryptographic tool that
we suggest to employ to defeat the OFA strategy.d@liberately use this general term as we do natt wa
suggest any physical appearance of the generabrinyPart 6, we show that there are two promisiags on
how to practically implement this tool. One of the@ssumes a classic autonomous hardware devicexisss
outside the smart phone device. Another one, howeses so-called TrustZone processor mode toectbit
generator virtually, on the same physical devia th running the smart phone environment itselé @it a
discussion of possible SIM-based arrangements,ulsecaf two reasons. At first, there is a strongtieh to a
particular GSM operator in a particular countrytisese are not unified and general approachesdsinsl, user-
land applications on both Android and iOS are aittyeunable to exchange direct APDU (accordingS@IIEC
7816) commands with the UICC/SIM card.

INFORMATION SECURITY SUMMIT 2012 9

Now, we are going to postulate the basic secustyuirements for the independent token generat@cisyr
formulation allows us to further investigate camtaiuances of the particular implementation later lbralso
allows us to show that provably defeating the joKIA [0 OFA strategy requires the most rigorous
implementation of the token generator — in a fofra stand-alone hardware device (cf. Part 6.3).

Theindependent token generatshall at least:

1. generate one-time passwords (OTP) for a two-feaithientication scheme,
2. securely manage generator master key used forutipege of req. 1,

3. securely handle client’s PIN used for the purpdseq. 1,
4

allow the client to see any user-input data thatwsed for the OTP computation in a way that cabeot
compromised by a smart phone malware (transactite réview),

5. allow the client to approve or deny the OTP comipamain a way that cannot be compromised by a smart
phone malware.

In the following part, we will investigate selectptbmising technologies that can be used for sndegendent
token generator implementation. We will also paint those slight nuances linked to the particulay the
postulates given above are fulfilled.

6 Promising Technologies

6.1 TrustZone

TrustZone is a security flag ship developed andnoted by ARM Ltd. Let us recall this is the compahgt
sells ARM processor core designs as intellectuap@rties (commonly calletP coreg to particular integrated
circuit manufacturers that eventually providgstem on chigSoC) designs for smart phones. Practically
speaking, our two-factor authentication applicationeither Android or iOS will eventually find &4 running

on certain ARM IP core platform. In particular, time time of writing this article, TrustZone techogy was
incorporated into all Cortex-A IP core series [28].

The TrustZone principle is based on introducingtlaeo control bit calledNon-secure(NS) that is stored in
Secure Configuration Regist¢5CR) managed by the existing, well-known (fortegs programmers) control
coprocessor CP15. Low value of NS indicates thainghapplication belongs to so-callsdcure world hence it
is allowed to access secure parts of the chipalt be tempting to view this mode as just “protectextie plus”
leading to a rather classical hypervisor systenigded his would be, however, highly misleading. fit, the
secure world is orthogonal to those existing presesodes [2], therefore appearing as a virtuatgssor core
in itself. At second, the NS flag is propagatedh®Advanced eXtensible Interfa¢aXI) bus which is the main
interconnection network inside SoC designs. Thatokshis design, the secure world is not limitedthe
particular processor core as it extends towardssistem peripherals as well. Therefore, for instare
cryptographic coprocessor can recognize thatdgbreamunicating with a secure world application, eafjowing
a sensitive key operation, etc.

lllustration of cooperation in between thermal worldandsecure worldcode is show in Figure 2 according to
[2]. It is assumed the secure world will be usitsgown simple operating system that manages apiplicservice
modules calledrustlets Our token generator is a clear candidate for sudtustlet. The only part directly
exposed to the normal world is the secure moriitar plays a role of gatekeeper between those twizgio

10 INFORMATION SECURITY SUMMIT 2012

Normal Worlc Secure Worl
User Secure World Secure World
Application Trustley | 7T Trustlef
A
A\ 4
Operating | .| Monitor | | Secure World
System M 7| Gateway [T Kernel

Figure 2: TrustZone Operating Environment.

We should, however, recognize that the monitoryim& means the only one component that must bduligre
checked for exploitable vulnerabilities. In segyrit is always important to recognize the apprafimodel and
to follow it during risk analysis. In this partieul case, we actually have a situation similar fentiserver
applications. It is well understood that a vulnégaberver application can compromise the whole eserv
environment. Despite all its benefits, the TrustZan itself does not save us from carefully evahgaevery
piece of code that is running in the secure wa@ld. the other hand, the secure world clearly prosnteebe
much more rigor and manageable environment — gimiléor instance, to a contrast in between ordinarent
workstation and the bank server. There should b®derate set of trustlets, each and every one goitgy a
deep security evaluation before being allowed toam the secure virtual processor core.

The following table illustrates possible arrangetrafa successful one-time password computation.agéeme
there are some input user data that can be used.tauthenticate client transaction details.

Normal World Secure World
i) collect input data
ii) invoke OTP generator trustlet
iii) display input data for verification

iv) display safety greeting message and ask for th
input data confirmation by entering PIN

v) compute OTP
vi) return OTP to the normal world
vii) use the OTP

Table 1: Token generator command flow.

Now, let us discuss security of the arrangementaijle 1 with respect to our threat model. We prdceg
verification that this design fulfils our postulatgiven in Part 5, so it can resist OFA. The fisstulate is trivial,
so we will start with the second one. Let us asstiraethe generator master key (whatever it isjased in such
a way it is inaccessible from any normal world cauguding (!) its kernel. It is important to rezdi this key is
no longer operated by the normal world part ofrtiebile application, so it is inaccessible for agible normal
world malware running with the same privileges.

Furthermore, it is reasonable to use the sdisigibuted implicit PIN verificatiorscheme for managing the OTP
generation and verification as we have already shimwATA prevention in Part 4. This way, we arenaig to
provide not only OFA resistance, but also ATA resise as well. If we want to use a different crgpéphic
scheme, we must carefully verify an attacker camumiceed with ATA approach, since we already have t
achieve ATA resistance in any way. From Part 2, al& know that OFA resistance in itself does not
automatically imply ATA resistance — so we alwagsdto check twice.

We must also constantly bear on our mind that areesry non-volatile data element becomes accesgibén
the attacker has a total physical control oversthart phone device. Unfortunately, this seems tougeeven for
trustlet data. There are certain constructions dase encrypting the secret data elements by using a

INFORMATION SECURITY SUMMIT 2012 11

cryptographic coprocessor that is accessible irs¢tmeire world only (recall that the NS flag is alvable on the
internal AXI bus). This way, however, we are beamgnio be closely dependent on the particular Scsigde
hence our application and security arguments aréonger general. For certain proprietary appligagicor
limited-variability platforms like iOS devices, thmay not be a problem. Further discussion ofdpizroach is,
however, beyond the scope of this paper.

We continue with postulate no. 3. One importantuseavorld feature is that it can (and will) load tbwn
keyboard and display drivers, hence eliminating pogsible attacker’s patches aimed to capture dalifynthe
user input/output data. We shall, however, investigcarefully what this exactly says about secukitye can
derive the following statements that shall be goted for the secure world environment. Generdily trustlet
can be sure that:

1. its keyboard input is already freshly typed by tiser with no attacker’s capture or modification,
2. its display output is not captured or modified loyadtacker.

We shall realize that guarantee no. 1 in itselfsdogt say that attacker's code running in the normalldvor
cannot display a fake PIN request dialog to corwittte user to enter the PIN right into attacke@sds.
Therefore, to prevent the PIN capture threat, velrie carefully blend our algorithm using both afoentioned
assurances. Possible arrangement is given ingtep Table 1. Let us assume that, in some trustiefiguration
menu, the client can set up a personalized se@lebme message that is displayed each time théetrungeds
sensitive input data like PIN. Similarly to the easf the generator master key, let us further assimat this
message is stored in such a way it is inacces$ible any normal world code including (!) its kern&y
guarantee no. 2, we are assured that this messag®tcbe captured when being displayed by thelétust
Therefore, attacker working under OFA assumptios @ chance to learn this secret greeting anywayws
can use it as a hint for the user to be able tindisish a legitimate PIN request from a fake &ttais dialog.
Working this way, we have also achieved certaiistasce against the joint strategy ATAOFA, as we have
hardened stealing the PIN via OFA and gainingtérlan via ATA.

Note, however, that there is still certain residigk of the joint strategy ATA]I OFA which is rooted in the fact
that the OTP value is eventually returned backhtortormal world application, cf. step vi) in Taldleln this
environment, it could be captured by attacker'secasing the OFA approach. Later on, during theofaithg
ATA phase, the attacker would pick up this valug aise it to mount a brute force attack on the RiN (
discussion in Part 4).

Postulate no. 4 is ensured by guarantee 2 statae atvhile postulate no. 5 is achievable due toattsumption
that both secret generator master key and theydafist challenge message are inaccessible for angaiavorld
code. Therefore, the only way to compute OTP istoke the trustlet running in the secure world &md code
is assumed to fulfil the security policy given byr @ostulates.

So far, it seems TrustZone is really interestingogpt present in almost any modern smart phonéhatdve can
readily start our own trustlet development. Thetfpart is true, but the second one, unfortunaiglgot. In time
of finalizing this paper (spring 2012), there wasafficial public support for writing TrustZone apgations in
both Android and iOS development tools. Furthermtirere were no public rules set for trustlet eatibn and
certification, neither was it clear how this progskould look like at all. Basing on informal dission following
[1], this situation should start changing righstiiear (2012). Hopefully, the dream will eventuaibme true.

6.2 Trusted Execution Environment (TEE)

This is a standard developed and promoted by tbéabPlatform Inc. which is well-known subject hretarea
of smartcard applications. This standard is clearbpired mainly by the former model of using sroartls as
secure elements sitting besides unsecured richugaacenvironments like PC/Mac main processorsas,
however, achieved certain maturity and it aims tovjgle a unified application access to various scu
environments that are accessible on the partiqitform [16]. Detailed discussion of this concephich is
mainly standard-based activity that is still undenstruction, is beyond our scope here.

We have included this term mainly to show how inpares with the TrustZone technology mentioned apov
since sometimes we can see these two notions beirfgsed. The best way to understand this sutggmrihaps
to regard TrustZone as a physical realization pasicular trusted execution environment coveredhey TEE
standard. What is, however, important to bear amdns that TrustZone is an existing technology thatready
implemented in almost every reasonable smart plimvice, while TEE is just a general standard-oeént
activity. On the other hand, the application staddeamework is what is currently missing in Trusti&, so we

12 INFORMATION SECURITY SUMMIT 2012

can hopefully see these two initiatives going hamdhand to improve smart phone security. What igtlvo
mentioning with respect to TEE is that it theoralic can extend TrustZone's secure world domairirigethe
SoC boarder that is even behind the reach oftiégsrial AXI bus [2].

6.3 NFC-coupled Smart Device

We have introduced TrustZone as a robust technatigwing us to solve ATA and OFA resistance withthe
necessity of using another external HW device. \&eehalso achieved certain resistance against theggst
joint strategy ATAO OFA. There was, however, still certain residuak rof successful attack under this
assumption. If we want to achieve really robust datendable resistance against ATITAOFA, then there is
obviously nothing that could save us from the neitg®f using a fully-fledged independent HW devidée
only question is: Which one to chose?

There are two promising technologies that are pexdeseparately, yet. The first one is an intengstipproach
based on using existing EMV chip payment card sehf34] for generation of OTP based on a sharedetsétr
between the payment card and the bank. There aveatmost identical approaches which, however, bear
different names. VISA uses so-called DPA (Dynamasseode Authentication) while MasterCard has (G&P
(Chip Authentication Program). In practice, thisoléhconcept is often dubbed as CAP/DPA [39]. Unfoately,

the documentation of these schemes is still confidk so the sole publicly available sources areerse
engineering notes like [10]. There is apparenttition of CAP/DPA — it is exclusively targeted fmtwo-factor
authentication in the bank area. To remove the gsityeof carrying a separate card reader for CARDBsed
authentication, payment card association are ceriagl using smartcards with embedded display aytdard

in the near future.

The second promising technology is NFC (Near F@&binmunication) [30]. We have already talked abos€CN
at ISS 2008 [20]. Let us recall that a device epgeipwith NFC controller can behave either as aamiless card
reader, contactless card emulator, or to work inadled point-to-point active mode. Contactlessisaccessible
by NFC device working as card reader include masnhartcards according to ISO/IEC 14443. Interebtinge
can note that our prediction at ISS 2008 [20] spyFC-ready devices, especially mobile phones, bell
popular tools for hacking activities at the HF-b&ID came true [15].

Putting these two pieces together, we can getly iageresting independent token generator. Whté mobile
phone, it would communicate by using the NFC iateef The benefit of NFC when compared to e.g. Bhtéat

is that the OTP generator can be powered righutitrahe NFC interface, so there is no need for kmatiery
management. This in turn makes the device conditletain at a reasonable cost. The OTP generateif it
would be a contactless CAP/DPA smartcard with erdbddautonomous display and keyboard. The embedded
display which is driven by the smartcard procegsatependently on the smart phone) allows secueekihg of
transaction data before entering the PIN. The aod-&ayboard ensures PIN confidentiality and the (IFA
scheme finally should ensure quite positive act&ptdn the banking area.

If we should design a two-factor authenticationrion-banking area, we can still use almost the ssppeoach.

We would only replace the CAP/DPA scheme (realiasde.g. Java Card application) with another scheme
designed specially for the particular purpose. Kégimportant ideas of the whole design would, heavestay

the same:

1. tamper resistant key store with on-chip OTP contra

2. independent display,

3. independent keyboard,

4. NFC used for powering and communication with thedmhone.

Regarding the bank area, there is also anotheiljildgsthis time rooted in NFC mobile payment dipptions.

For such purpose, there is a secure element hdgtedn the mobile phone (it can be either partid€C/SIM

card or a separate silicon die) that implementsptiagnent card application. To conduct a paymeset,sdécure
element interfaces with the NFC controller workinghe contactless card emulator mode, so finglyearing
as a kind of contactless payment card to the caitgidrld. There is also an interface channel in betwthe
secure element and the main application procedkaviag the client to enter so-called passcode Wwiian be
seen as an analogue of the classic EMV offline telsbme extent.

In the aforementioned setup of NFC mobile payméntyvould be also possible to include a CAP/DPA
application on the secure element. The autonommpag and keyboard needed for secure independkant

INFORMATION SECURITY SUMMIT 2012 13

generator can be finally substituted by a carefal@signed trustlet module running on the securaualir
processor core (cf. TrustZone discussion abovejs Way, we can get another implementation of a sbbu
independent token generator that can withstand #heejoint ATA OFA strategy.

7 Conclusion

In this basic study, we were focused on a relatiwshall part of the whole information system (expbile
banking) that is running on the client smart phofieere are several other parts of the system theddy do
actively contribute to its security. These can, stimes, even compensate certain weaknesses of dbdem
platform. Their discussion is, however, beyondgbepe of this elaboration. Our aim was to investigan how
far we can effectively go right on the mobile deviander very decent assumptions on its securitg Th
conclusion is that the two-factor authenticatiothvein adequate level of security is still achiegabl

On the other hand, it is definitely challengingktés design such mechanism securely. First ofvadl,have to
fully understand the relevant threat model. Sudingle model was presented here with certain acoerso-
called after-theft attack. Resistance to this &tta@chievable even with a general SW arrangeifientwithout
using any exotic HW features or external devices] & is considered as mustfor e.g. today’s banking
application. Resistance to the on-the-fly attacsfidifferent kind, as it is only partially achiese with a general
SW implementation. To do that, we must not onlyidvexploits in our own application. We also have to
carefully educate clients to manage their smarnpb@roperly and, finally, we have to accept trsidrel risk.
This seems to be a bearable task, but for a guaiteet time period (several years). Hopefully, iation will
be better in the future as we can look forwardaeehapplications employing TrustZone secure virfuatessor
core as well as various supporting devices, like€€hBpable authentication smartcards with autonord@ay
and keyboard.

References

[1] Anderson, J., Cade, B., and Stuart, Mobile Security — EMV and BeyonMasterCard Global Risk
Management Conference, Prague, 2011

[21 ARM Security Technology - Building a Secure Systsimg TrustZone Technologwhitepaper, ARM
Limited, 2009

[3] Bachman, JiOS Applications Reverse Engineeri8yiss Cyber Storm, 2011
[4] Bédrune, J.-B. and Sigwald, iPhone Data Protection in DeptiITB Amsterdam, 2011
[5] Blazakis, D..The Apple SandboBlack Hat DC, 2011

[6] Breeuwsma, M.-F., de Jongh, M., Klaver, C., van Heijff, R., and Roeloffs, M.:Forensic Data
Recovery from Flash Memqgrgmall Scale Digital Device Forensics Journal,.\19INo. 1, June 2007

[71 Breeuwsma, M.-F.[Forensic Imaging of Embedded Systems Using JTAGn(lary-scan) Digital
Investigation 3, pp. 32 - 42, 2006

[8] Chin, E., Felt, A.-P., Greenwood, K., and Wagner, Analyzing Inter-Application Communication in
Android, MobiSys'11, 2011

[91 Dhanjani, N.:New Age Application Attacks Against Apple's iOSd(&@ountermeasuresBlack Hat
Barcelona, 2011

[10] Drimer, S., Murdoch, S.-J., and Anderson, @ptimised to Fail: Card Readers for Online Banking
Financial Cryptography '09, 2009

[11] Dubuisson, O.ASN.1 - Communication Between Heterogeneous Sydongan Kaufmann Academic
Press, 2001

[12] Enck, W., Octeau, D., McDaniel, P., and Chaudt&wiA Study of Android Application Securifroc. of
the 20" USENIX Security Symposium, 2011

[13] Fairbanks, K.-D., Lee, C.-P., and Owen lll, H.-Eorensics Implications of Ext4Proc. of the Sixth
Annual Workshop on Cyber Security and Informatiotelligence Research, ACM, 2010

14 INFORMATION SECURITY SUMMIT 2012

(14]

(15]

(16]
(17]
(18]

(19]
(20]
(21]

(22]

(23]
(24]

(25]
(26]
(27]
(28]
(29]
(30]
(31]
(32]

(33]
(34]
(35]

(36]

(37]
(38]

(39]
[40]

[41]

[42]
[43]
[44]

Felt, A.-P., Finifter, M., Chin, E., Hanna, S., awthgner, D.:A Survey of Mobile Malware in the Wild
SPSM'11, 2011

Francis, L., Hancke, G., Mayes, K., and MarkantisaK.: Practical Relay Attack on Contactless
Transactions by Using NFC Mobile Phon&sCR ePrint Archive, 2011/618, 2011

GlobalPlatform Device Technology - TEE System Aechirre ver. 1.0, GPD_SPE_009, December 2011
Halbronn, C. and Sigwald, JBhone Security Model & VulnerabilitieslITB KL, 2010

Hay, R. and Amit, Y.:Android Browser Cross-Application Scriptin@VE-2011-2357, IBM Rational
Application Security Research Group, 2011

Heider, J. and Boll, MLost iPhone? Lost Password&raunhofer SIT Report, cf. also [41], 2011
Hlav&, M. and Rosa, TRFID: What's in our pockets anyway@formation Security Summit '08, 2008

Hoog, A. and Strzempka, KiPhone and iOS Forensics — Investigation, Analgsid Mobile Security for
Apple iPhone, iPad, and iOS Devicé&dsevier, 2011

Hoog, A.:Android Forensics — Investigation, Analysis and MoBecurity for Google AndrojcElsevier,
2011

HOTP: An HMAC-Based One-Time Password AlgoritRRC 4226, 2005

http://androidandme.com/2012/02/applications/goegdet-hacked-again-no-root-access-required-this-
time/

http://developer.android.com

http://developer.apple.com

http://theiphonewiki.com
http://www.arm.com/products/processors/technoldtrigstzone.php
http://www.bbc.co.uk/news/technology-15635408
http://www.nfc-forum.org/home/

iOS App Programming Guidépple Developer Guide, Apple Inc., 2011

Menezes, A.-J., van Oorschot, P.-C., and Vanst8nd\.: Handbook of Applied CryptographfCRC
Press, 1996

Miller, C. and lozzo, V.Fun and Games with Mac OS X and iPhone PaylpBtisck Hat Europe, 2009
Miller, C. and Zovi, D.-A.-D..The Mac Hacker's HandbopWiley Publishing, Inc., 2009

Octeau, D., Enck, W., and McDaniel, Fhe ded DecompileMNAS-TR-0140-2010, Networking and
Security Research Center, The Pennsylvania Statetdity, 2011

Oudot, L.:Planting and Extracting Sensitive Data Form YoundRe's SubconscioulITB Amsterdam,
2011

PKCS #1 v2.1: RSA Cryptography Stand®&A Laboratories, June 14, 2002

Rosa, T.:Android Ecosystem Integrity - Possible Malware Grbsfection Vectgr seminar note,
http://crypto.hyperlink.cz/rosa_android_gm_vlb.@g11

Rosa, T.:Unleashing EMV Cards For Security Resear@anta’'s Crypto Get-Together in Prague,
http://crypto.hyperlink.cz/files/EMV_unleashed_rosa.pdf, 2010

Secure Coding Guidépple Developer Guide, Apple Inc., 2012

Toomey, P.:"Researchers Steal iPhone Passwords In 6 Minute§tue, But Not the Whole Story
Security Blog, http://labs.nechapsis.com/2011/02&archers-steal-iphone-passwords-in-6-minutes-
true-but-not-the-whole-story/ , 2011

TOTP: Time-Based One-Time Password AlgorjtRiRC 6238, 2011
Zdziarski, J.Hacking and Securing iOS Applicatior@@'Reilly Media, 2012
Zovi, D.-A.-D.: Apple iOS 4 Security EvaluatipBlack Hat USA, 2011

INFORMATION SECURITY SUMMIT 2012 15

