
Smart Cards & Devices Forum 2012, May 17th, Prague

Smart Phones Security
How (Not) To Summon The Devil

Tomáš Rosa
http://crypto.hyperlink.cz

Smart Cards & Devices Forum 2012

Abstract

� We present several real-life vulnerabilities that the
author has found when experimenting with mobile
applications.
� It is not hard to guess the area of those application…

(hint: try author’s personal web).

� These are often based on innocent-looking
constructions.
� Furthermore, once known, the observations seem really

trivial.
� When unknown, however, they remain silently hidden

waiting for the day of their exploit.
� The final impact can be then really dramatic…

Smart Cards & Devices Forum 2012

Part ONE
Introduction

Smart Cards & Devices Forum 2012

ATA Scenario

Definition. Let the After-Theft Attack (ATA) be
any attacking scenario that assumes the
attacker has unlimited physical access to the
user’s smart phone.

� Imagine somebody steals your mobile phone…
� Despite being really obvious threat, it is often

totally neglected in contemporary applications.

� By a robbery, the attacker can even get access to
unlocked screen, hence receiving another
considerable favor!

Smart Cards & Devices Forum 2012

Forensic Techniques Lessons

� Hackers conferences are not the only one place
where to look for an inspiration.

� There are also forensic experts who publish very
interesting results [4], [5], [15], [24].
� Actually, they often take hacking techniques and refine

them to another level of maturity.
� The main purpose is to prosecute criminals, of course.
� But it is like a pistol – it is a question of who is holding the

gun…
� Anyway, security experts shall definitely consider looking

into forensic publications, at least time to time.

Smart Cards & Devices Forum 2012

Cross-Platform Attacks

� Interestingly, forensics also shows how to
exploit certain access to both the mobile
phone and the “paired” computer.
� Such situation is rarely studied at hackers

conferences, yet.
� This model, however, fits nicely cross-platform

attacks that arise e.g. with banking applications.
� Again, we shall really look at what those forensic

experts can do…

Smart Cards & Devices Forum 2012

2root || !(2root) ? Don’t!

� Running highly sensitive applications on rooted or
jailbroken devices shall be avoided.
� Already rooted or jailbroken device definitely makes the

attacker’s job easier.
� In the same way as it already helps in forensics [15], [24].
� Furthermore, the runtime protection is almost none.
� As you can also see in Cycript experiments in Part Three.

� Sometimes, the attacker can even hope to get an access
to memory dumps of sleeping processes.
� Consider the unlocked screen and the ability to run anything

as root with no sandbox…

Smart Cards & Devices Forum 2012

2root || !(2root) ? Do!

� We shall admit, however, the device gets
rooted or jailbroken without user’s incentive.
� In JailbreakMe tools, for instance, it was enough

to point the Mobile Safari at innocent-looking
page [28].

� Developers, therefore, shall test their
applications on such devices!
� Just to be able to see their applications from

other perspective…
� From the perspective of the enemy.

Smart Cards & Devices Forum 2012

Experimental Setup

� Experiments noted in this presentation
were exercised on:
� (rooted) Google Nexus S I9023XXKF1

with Android version 2.3.6, build
GRK39F,

� (jailbroken) Apple iPhone 4S – 16 GB
MD235B with iOS v. 5.0.1 (9A406).

Smart Cards & Devices Forum 2012

Part TWO
Latent PIN Prints

Smart Cards & Devices Forum 2012

Memento ATA

� We shall assume that:
� Once having unlimited physical access to the

mobile device,
� the attacker can read any plaintext data stored

in its memory.
� This also applies to certain encryption keys! [2],

[14], [15], [23], [24].

� Despite not being trivial, we shall further
assume this also applies to the content of
the volatile RAM.

Smart Cards & Devices Forum 2012

PIN Prints

� This can be any direct or indirect function
value that:
� once known to the attacker,
� can be used for a successful brute force attack

on the PIN,
� under the particular attack scenario.

� Principally, the same applies to general
passwords, too.
� However, we can mitigate the risk by enforcing

strong password policy here.

Smart Cards & Devices Forum 2012

Pitfall No. 1

� There was RSA private key encrypted by a
derivative of a decimal PIN.
� According to PKCS#1 [22], there is a huge

redundancy based on the ASN.1 structure
syntax [8].

� Furthermore, there is a terrible amount of
algebraic-based redundancy in the private key
numbers themselves [18].

� So, the decimal PIN was in fact packed
together with the encrypted key store.
� …as a bonus gift to the attacker!

Smart Cards & Devices Forum 2012

Pitfall No. 2

� If the PIN is used for OTP generation,
� then any OTP itself is a valuable PIN print.

� This is true even if the OTP is also based on
some symmetric key.
� Or, we have to prove the key cannot be

retrieved by respective techniques like [2], [14],
[15], [23], [24].

� Therefore, we shall:
� not store OTPs in permanent memory,
� wipe OTPs out of the volatile memory as soon

as possible.

Smart Cards & Devices Forum 2012

Padding Issues

� Consider the HOTP according to RFC 4226.
� This is a popular OTP generator based on

HMAC-SHA-1.
� Its reference Java implementation [16], however,

contains a security flaw.
� OK, it is a reference design in the sense of test

vectors.
� On the other hand, the RFC does not warn clearly that

this code shall not be used for real implementations.
� Especially on Android, it is probably tempting to simply

copy-paste the code. Do not do that!

Smart Cards & Devices Forum 2012

Padding by RFC 4226

result = Integer.toString(otp);

while (result.length() < digits) {

result = "0" + result;

}

return result;

Smart Cards & Devices Forum 2012

Behind Those “+” and “=”

� With each iteration, there are two new
instances created:
� (“+”) java.lang.StringBuffer or

StringBuilder to perform the concatenation,
� (“=”) java.lang.String to hold the result.

� However, the references to the previous
iteration result and to the concatenation
instance are lost.

Smart Cards & Devices Forum 2012

Memory Footprint

� With each iteration, we have at least one
copy of the precious OTP left unattended in
the memory.
� We do not have a reference to them.
� So, we cannot wipe them securely!

� Furthermore, there is the unfortunate choice
of using String to hold the result.
� This is by standard immutable object, so we

need to invest an extra effort to wipe such
values properly.

Smart Cards & Devices Forum 2012

Android Proof-Of-Concept

� We have compiled the original HOTP
padding procedure for Gingerbread.
� To exhibit the faulty behavior, we have

deliberately shortened the input integer,
so we were able to see the padding in
action.

� In particular, we set:
� otp = 755224,

� digits = 9.

Smart Cards & Devices Forum 2012

Dalvík Code View by IDA Pro

Smart Cards & Devices Forum 2012

Android Leakage Illustration

Smart Cards & Devices Forum 2012

Part THREE
My name is C. Objective-C

Smart Cards & Devices Forum 2012

Note on the Root Account

� The following experiments expose (ab)using the
root account on a jailbroken iPhone.
� It was, however, verified that everything shown here can

be done under the mobile account as well.
� Once a jailbreak environment is already set, the root is not

such important for a malicious application.
� Obviously, it is potentially dangerous to install any

“underground” (Cydia, etc.) application side by side with e.g.
sensitive banking application.

� Recall, almost all runtime protections are gone!
� We shall, on the other hand, constantly bear on mind that a

kind of jailbreak can happen without user’s incentive.

Smart Cards & Devices Forum 2012

Weird Pictures Demo

� Well, it would not be
fair to use real-life
applications here.

� We will use a modest
iPhone joke that was
written especially for
this purpose to exhibit
all those weaknesses
we want to talk about.

Smart Cards & Devices Forum 2012

Password: “kubrt”

It’s just the front camera in action…

Smart Cards & Devices Forum 2012

Cycript

� Delicate combination of JavaScript and Objective-C
interpreter running on iOS [31], [32].
� Provides REPL (Read-Eval-Print Loop) interface.

� It can attach to an already running process and
start commanding its Objective-C runtime.
� It uses MobileSubstrate framework to do that [32].
� This requires a jailbreak, but remember what we said

before – it can happen without user’s incentive.

� Its original purpose probably was not application
hacking (in security sense).
� Anyway, it is an excellent tool for vulnerability research

and demonstration [24].

Smart Cards & Devices Forum 2012

Cycript Taste

� As an illustration, we show a Cocoa Touch style
alert() function in Cycript.

function cocoAlert(msg) {
var alertView = [[UIAlertView alloc]

initWithTitle:"Alert"
message:(msg!==undefined) ? msg : ""
delegate:null
cancelButtonTitle:"OK"
otherButtonTitles:null];

[alertView show];
[alertView release];

}

Smart Cards & Devices Forum 2012

Back to Weird Pictures

� How is the login view managed?
� What if it is just a modal view controller presented by the

root view controller of the application?
� We mean having something like this in e.g. the method

applicationWillResignActive: [33]:

[self.viewController presentViewController:

[WPLoginViewController getDefault]

animated:NO
completion:^{NSLog(@"modal login");}

];

Smart Cards & Devices Forum 2012

Consider This (hack1.cy)

function AppVC() {
var window = [UIApp keyWindow];
this.viewController = [window
rootViewController];

}
AppVC.prototype.unlock =

function(animated/*opt*/) {
[this.viewController
dismissModalViewControllerAnimated:animated];
cocoAlert("From cycript with love...");

}
var ac = new AppVC();
ac.unlock();

Smart Cards & Devices Forum 2012

cycript -p WeirdPictures hack1.cy

Smart Cards & Devices Forum 2012

Lesson Learned

� Do not assume that plain GUI provides any
reasonable data protection.

� We shall assume the attacker can get
access to all local plaintext data.
� Especially important to consider under the After-

Theft Attack assumption.
� If we need to control data access, we shall

encrypt this data [24].
� But pay really high attention not to create any useful

PIN prints this way!

Smart Cards & Devices Forum 2012

Consider Yet This (hack2.cy)

function LoginVC() {
this.viewController = [WPLoginViewController
getDefault];

}
LoginVC.prototype.showPwd = function() {

var pwd = [[this.viewController passwordField] text];
if (pwd == null)

cocoAlert("Sorry Sir.");
else

cocoAlert("Your password, Sir: \"" +
pwd.toString() + "\"");

}
var lc = new LoginVC();
lc.showPwd();

Smart Cards & Devices Forum 2012

cycript -p WeirdPictures hack2.cy

� We shall consider
using one-way
derivatives, if we really
need to keep user
secrets in memory for
some purpose.
� Furthermore, it is wise

not to expose anything
like

-(id)passwordField !

Smart Cards & Devices Forum 2012

Cocoa Shaken, Not Stirred

� So far, we had the code under our
control.
� When we understand what is wrong, we

can fix it.

� What if the problem is out of reach of
our hands?
� For instance, in Cocoa Touch.
� Right around the UITextField control.

Smart Cards & Devices Forum 2012

UITextField in Weird Pictures

� We use this control
view to let users to
type their
password.

� Of course, we have
marked it “Secure”.
� But, is it enough?

Smart Cards & Devices Forum 2012

Consider This Gdb Script

set variable $sel = (void*)sel_getUid("text")
set variable $cla = (void*)objc_getClass("UITextFie ld")
set variable $addr = (void*)(((unsigned

long)class_getMethodImplementation($cla, $sel)) & 0 xFFFFFFFE)

break *($addr+118)
commands

printf "from: 0x%lx\n", $lr
if ($lr != 0x0)

x/i $lr
end
printf "return: 0x%lx\n", $r0
if ($r0 != 0x0)

x/a $r0
call (unsigned char*)CFStringGetCStringPtr($r0, (un signed

long)CFStringGetSystemEncoding())
end
c

end
saved as /var/root/tfexp.gdb

Smart Cards & Devices Forum 2012

Notes on the Gdb Script

� Loaded by the gdb source command.
� We use the original Xcode gdb running right on the iOS

device [17].
� We attach to the existing process of WeirdPictures.

� Well, there may be ASLR [25].
� So, we abuse the wonderful Objective-C runtime to query

for the -[UITextFiled text] implementation.
� We then setup a breakpoint at the end of this method.

� This offset can change, we have verified it for iOS v. 5.0.1
(9A406) and v. 5.1 (9B176).

� This way, we can monitor who is querying our precious
passwordField and what is the result.

Smart Cards & Devices Forum 2012

Loading into Gdb

(gdb) source /var/mobile/tfexp.gdb
Breakpoint 1 at 0x324d508a

(gdb) info breakpoints
Num Type Disp Enb Address What
1 breakpoint keep y 0x324d508a <-[UITextField text]+118>

printf "from: 0x%lx\n", $lr
if ($lr != 0x0)

x/i $lr
end
printf "return: 0x%lx\n", $r0
x/a $r0
if ($r0 != 0x0)

x/a $r0
call (unsigned char*)CFStringGetCStringPtr($r0,

(unsigned long)CFStringGetSystemEncoding())
end
c

(gdb) c
Continuing.

Smart Cards & Devices Forum 2012

What a Surprise…

� As the user starts typing on the virtual keyboard, we can see:
…
Breakpoint 1, 0x324d508a in -[UITextField text] ()
from: 0x3242bb91
0x3242bb91 <-[UITextField _updateAutosizeStyleIfNeeded]+69> …

return: 0x14d750
0x14d750: 0x3f4712c8 <OBJC_CLASS_$___NSCFString>
$2 = (unsigned char *) 0x0

Breakpoint 1, 0x324d508a in -[UITextField text] ()
from: 0x3242bb91
0x3242bb91 <-[UITextField _updateAutosizeStyleIfNeeded]+69> …

return: 0x12f860
0x12f860: 0x3f4712c8 <OBJC_CLASS_$___NSCFString>
$3 = (unsigned char *) 0x35c2c1 " k"

Smart Cards & Devices Forum 2012

…And It Continues…

Breakpoint 1, 0x324d508a in -[UITextField text] ()
from: 0x3242bb91
0x3242bb91 <-[UITextField _updateAutosizeStyleIfNeeded]+69> : movw r6, #5276 ; 0x149c
return: 0x1483f0
0x1483f0: 0x3f4712c8 <OBJC_CLASS_$___NSCFString>

$4 = (unsigned char *) 0x159ae1 " ku "

Breakpoint 1, 0x324d508a in -[UITextField text] ()
from: 0x3242bb91
0x3242bb91 <-[UITextField _updateAutosizeStyleIfNeeded]+69> : movw r6, #5276 ; 0x149c
return: 0x3179f0
0x3179f0: 0x3f4712c8 <OBJC_CLASS_$___NSCFString>

$5 = (unsigned char *) 0x35eed1 " kub "

Breakpoint 1, 0x324d508a in -[UITextField text] ()
from: 0x3242bb91
0x3242bb91 <-[UITextField _updateAutosizeStyleIfNeeded]+69> : movw r6, #5276 ; 0x149c
return: 0x15a3d0
0x15a3d0: 0x3f4712c8 <OBJC_CLASS_$___NSCFString>

$6 = (unsigned char *) 0x13dca1 " kubr "

Breakpoint 1, 0x324d508a in -[UITextField text] ()
from: 0x3242bb91
0x3242bb91 <-[UITextField _updateAutosizeStyleIfNeeded]+69> : movw r6, #5276 ; 0x149c
return: 0x113e40
0x113e40: 0x3f4712c8 <OBJC_CLASS_$___NSCFString>

$7 = (unsigned char *) 0x15a3d1 " kubrt "

Smart Cards & Devices Forum 2012

…Then Comes Our Query

Breakpoint 1, 0x324d508a in -[UITextField text] ()

from: 0x7e47

0x7e47 <-[WPLoginViewController login:]+75> …

return: 0x1325b0

0x1325b0: 0x3f4712c8 <OBJC_CLASS_$___NSCFString>

$8 = (unsigned char *) 0x1544e1 " kubrt "

Smart Cards & Devices Forum 2012

What The Hell…?!

� Apparently, we are not the only one
who is interested in the
passwordField value.
� For some reason, UIKit framework (of

Cocoa Touch) continuously monitors this
value, too.

� Furthermore, it was observed that this
activity leads to a considerable memory
footprint.

Smart Cards & Devices Forum 2012

Then, We Start Getting the Idea

� We shall also turn off the
automatic font adjusting.
� This rule would remain

silently hidden if we did
not experiment with the
gdb and jailbreak!

� However, one question still
remains.
� Is this enough, or could

there be a similar issue
somewhere else???

� Or, we may already need
the “Adjust to Fit” flag
set…

Smart Cards & Devices Forum 2012

Spraying The Secret

� Various parts of our secret string were identified in
dumps of the process memory.
� Of course, we have eliminated other potential sources for

the experiment.
� Anyway, the values were found not only at the addresses

noted in the previous gdb listing.
� Probably there is some further processing that finally

“sprays” these values around the memory heap.
� Again - did we already stop the whole leakage or just sealed

up one particular hole?
� Actually, we have already seen further automatic gathering

made for the -[UITextField _text]…

Smart Cards & Devices Forum 2012

Illustration of Heap Pollution

Smart Cards & Devices Forum 2012

Memento ATA Again

� Regarding the After-Theft Attack, this can be
really dangerous.

� According to the official documentation:
� “…[iOS] keeps suspended apps in memory for

as long as possible, removing them only when
the amount of free memory gets low…” [33]

� From the user perspective, however, the
application is simply done.

Smart Cards & Devices Forum 2012

Risk Assessment

� What if an attacker steals a device with such a
suspended process?
� It is a question of being able to dump RAM without cycling

the power.
� We cannot claim that there is always a chance to get

these data.
� However, we either cannot claim it will not happen.

� Clearly, end users shall not jailbreak their devices with
sensitive applications.
� As this can help the attacker considerably.

� Developers, on the other hand, shall test their own
application with a jailbreak!
� As this helps them to see things in a different light…

Smart Cards & Devices Forum 2012

What Shall We Do With Drunken
Framework?

� Obviously, it is not wise to try to improve the UIKit
framework itself.
� We cannot be sure we have patched all holes.
� Furthermore, there can be serious compatibility issues.

� Simple workaround is to avoid using
UITextField at all and devise our own control
view instead.
� Sometimes, however, we want to use UITextField for

compatible look-and-feel, etc.
� Then, the cryptography is here to help…

Smart Cards & Devices Forum 2012

Encrypted Keyboard Idea

� Devise custom keyboard that for each character
typed generates its cryptogram.
� The UITextField does no longer operate with plaintext.
� It is being fed by “crypto-chars” instead.

� When finished, we retrieve the crypto-char text,
decrypt it, and wipe out the ephemeral key used.
� The heap can still be polluted.
� But this is just a gibberish text, since the key is already

gone.

Smart Cards & Devices Forum 2012

Clear Idea, But…

� The implementation presents some interesting
problems:
� We are talking about some kind of a stream cipher [18].
� So, how to solve the keystream synchronization?
� How to cope with potential keystream reuse?
� How to generate the keystream fast enough?

� OK, this deserves a separate lecture.
� Please see:

� Dvořák, P. and Rosa, T.: How the Brave Permutation
Rescued a Naughty Keyboard,

� at Mobile DevCamp 2012, http://www.mdevcamp.cz/

Smart Cards & Devices Forum 2012

Part FOUR
Cross-Platform Attacks

Smart Cards & Devices Forum 2012

Overview

� We first show the Screen Lock Bypass
(SLB) application at work.
� This is an interesting forensics/hacking

technique in itself.

� We then conclude by noting a possible way
of an effective malware cross-infection.
� The observation is trivial. Its impact, however,

can really be dramatic.
� Especially in the area of two-factor

authentication applications.

Smart Cards & Devices Forum 2012

Version Alert

� The following part of this presentation
was researched in November 2011.
� It was the time of Android Market and the

Gingerbread was quite recent version.
� It is the era of Google Play and Ice

Cream Sandwich, now.
� The ideas and concepts presented here,

however, still apply.

Smart Cards & Devices Forum 2012

Screen Lock Bypass (SLB)

� Developed by Thomas Cannon [29], popularized by
Andrew Hoog [15], and freely available on the
Android Market (now Google Play).

� Its official purpose is to help users who accidentally
forgot their screen lock gesture or PIN.
� Anybody who knows the login name/password for the

Gmail account associated with the particular Android
device can use this application to try to unlock the screen.

� The success ratio may not be 100 %, but it is quite high
anyway.

� In particular, we did not encounter any problem during
several trials we have made for this presentation.

Smart Cards & Devices Forum 2012

The Dark Side

� As was already noted in [15], this
application may be used not only by
the legitimate device owner.
� Just anybody, who knows the respective

Gmail credentials can give it a try.
� Obviously, the Gmail credentials seems

to be quite “magic”.
� And that is just the beginning…

Smart Cards & Devices Forum 2012

The Screen (Un)Lock At Work

� Let us
assume that
the device
display is
locked by a
PIN that we
somehow
cannot
recall…

Smart Cards & Devices Forum 2012

Gmail Account Sidekick

� Let us assume we somehow can recall the
associated Gmail account login
name/password…

� So, we do the following (from any PC/Mac)
1. go to http://market.android.com
2. use the name/pwd to log in – note the same

credentials apply here as for that Gmail account
3. find the “Screen Lock Bypass” application and

let it install to the associated Android device

Smart Cards & Devices Forum 2012

Android Market Login

Smart Cards & Devices Forum 2012

Finding SLB Application

Smart Cards & Devices Forum 2012

Starting SLB Installation

Smart Cards & Devices Forum 2012

Telephone Number – Who Cares?

� We should emphasize it is unnecessary to
know the telephone number of the target
Android device.

� We either do not need to know any other a-
priori identification of the device.

� This is because of Android Market offering
us the list of associated devices
automatically.
� All we have to do is to choose a device from the

list.

Smart Cards & Devices Forum 2012

Installation In Progress

Smart Cards & Devices Forum 2012

Meanwhile On the Device

� While the
application is
being installed,
there is no user
interaction
required at the
mobile device
side at all.

� The name of the
application
flashes briefly in
the status bar,
leaving on just a
tiny symbol of a
successful
installation.

Smart Cards & Devices Forum 2012

Recall, OTA = Over The Air

� Note the SLB application was installed through a
service channel that Google uses to silently
manage Android devices worldwide.
� This permanent data path is kept automatically by each

Android device linked to the Android Market portal.
� That means, we do not need to tweak the mobile phone in

any way to start downloading.
� It may be resting on a table as well as in somebody’s

pocket – just in any place with GSM/UMTS service
coverage.

� The display does not have to be turned on before the
installation starts.

� Well, this all really is a silent service…

Smart Cards & Devices Forum 2012

Hands-Off Application Startup

� So, we have downloaded the (pirate)
application on the Android device.

� The question is, however, how to
make this code run?
� Obviously, we cannot do that manually,

since the screen is locked.
� Unfortunately, the Android OS provides

several reliable ways on how to do that.

Smart Cards & Devices Forum 2012

Android Broadcast Receiver

� This is an application component [26]
responsible for inter-process communication
based on broadcast Intent mechanism.
� Usually, developers use a BrodcastReceiver

derivatives to hook up for asynchronous system
events like:
� android.provider.Telephony.SMS_RECEIVED

� android.net.conn.CONNECTIVITY_CHANGE

� android.intent.action.PHONE_STATE

� etc.

Smart Cards & Devices Forum 2012

Broadcast Receiver Setup

� To register a BroadcastReceiver
component, it suffices to list it in the
respective AndroidManifest.xml.
� This xml file is stored in the application package

and it gets processed automatically during the
application installation [26].

� Therefore, no single code instruction of our
application needs to be run to hook up for a
particular broadcast Intent.

Smart Cards & Devices Forum 2012

Registration Example

� Remember – it is all done in a package
configuration file.
� We do not need to run our code to register

for a broadcast Intent.
…

<receiver android:name=".SniffReceiver">
<intent-filter android:priority="256">

<action
android:name="android.provider.Telephony.SMS_RECEIV ED"/>

</intent-filter>
</receiver>
…

Smart Cards & Devices Forum 2012

Once Upon A Broadcast…

� When the particular broadcast is fired, the
Android operating system invokes those
registered receivers.

� This way our onReceive() method gets
called and – yes, we have got it – our
application code is up and running!
� Actually, it is a bit complicated when it comes to

the order of calling these receivers and possible
event cancellation, but this is not important for
us here.

Smart Cards & Devices Forum 2012

Back To SLB

� The Screen Lock Bypass, in particular,
registers to the following broadcasts:
� android.intent.action.PACKAGE_ADDED

� Triggers when a new package is installed.
� android.intent.action.BOOT_COMPLETED

� Triggers after finishing OS boot and startup
procedures.

Smart Cards & Devices Forum 2012

Two Ways to Unlock

� According to the aforementioned events,
there are basically two ways on how to
trigger SLB activity.

1. To install just another application package from
the Android Market in the same way as we did
for SLB itself.

2. To switch off/on the device, hence triggering the
BOOT_COMPLETED.

� We have verified both ways worked well in
our experimental setup.

Smart Cards & Devices Forum 2012

Going the First Way

� It really does not matter what application we choose.
� Important is just the final event that triggers our onReceive().

Smart Cards & Devices Forum 2012

Installing Dummy Application

Smart Cards & Devices Forum 2012

Installation In Progress

Smart Cards & Devices Forum 2012

Having Triggered SLB

� Secondary
installation
triggered
PACKAGE_ADDED.

� This in turn
starts the SLB
trap.

� Suddenly, the
screen lock
disappears…

Smart Cards & Devices Forum 2012

Possibly

� Well, we can
also enjoy
playing Fruit
Ninja.

� But we do
not have to.

� Just for
fun…

Smart Cards & Devices Forum 2012

Remember… (regarding SLB)

� We have downloaded an application package on
the Android device.

� We have granted any user permissions we needed
to that package.

� We have run a code of that package.
� We did not need to directly operate with the mobile

device in any way.
� Furthermore, we even did not need to know the telephone

number.
� The only thing we needed was an internet access

and a valid login name/password for the associated
Gmail account!

Smart Cards & Devices Forum 2012

Working The Other Way

� By simply switching
off/on the device,
we can trigger
BOOT_COMPLETED.

� This again runs a
SLB code.

� Again, the screen
lock disappears
happily…

Smart Cards & Devices Forum 2012

Recall Again

� The only thing we needed was an internet
access and a valid login name/password
for the associated Gmail account!

� Well, this time we used the power off/on switch.
� The attacker, however:

1. Can use the former approach using a dummy package
installation.

2. Can just wait until users “recycle” their devices by
themselves.

Smart Cards & Devices Forum 2012

Access Rights Revisited

� The Android operating system relies mainly on
user-granted permissions [26].

� During the application installation, the user is asked
whether to allow or deny permissions required by
the particular AndroidManifest.xml [26].
� Well, this model itself is quite questionable as users may

not be fully aware of the possible impact.
� Furthermore, it is especially non-trivial to discover the risk

of various permission synergy effects.
� Anyway, this is not the topic we want to address here.

Smart Cards & Devices Forum 2012

User-Granted Permissions Limits

� We should note that there are some privileges that
cannot be granted even by explicit user
confirmation.
� For instance, it is not possible to directly grant root access

to the underlying Embedded Linux core.
� With user-granted privileges, we can, however, run a

possible root exploit…

� On the other hand, the power of user-granted
permissions is still considerable.
� For instance, permissions needed by an SMS sniffer can

be fully granted this way.

Smart Cards & Devices Forum 2012

Let Us Experiment

� To see permission granting process at work,
we can try installing SLB directly from the
Android Market application running on the
particular Android device.
� Well, this does not make a sense, but we do this

for another purpose.
� We want to demonstrate how the user-granted

permission mechanism works.

Smart Cards & Devices Forum 2012

Illustrative Screenshots

Smart Cards & Devices Forum 2012

As Bad As It Looks

� Well, but when we installed SLB through the
web interface, we did not need to grant
these permissions. Or did we?
� We did, but that time it was granted through the

web interface instead (cf. the former
screenshots).

� Does it really mean…?!
� Unfortunately, yes.
� Provided we have respective Gmail credentials,

we can choose any application from the Market,
give it any user-granted permission, send it to
the victim’s device, and run it!

Smart Cards & Devices Forum 2012

Cross-Infection Highway

� Time to time, users log to their e-mail accounts from
“ordinary” computers, too.
� What about if that PC/Mac is infected by a malware that

steals Gmail login credentials?
� The conclusion is immediate – such a malware can

instantly spread to the associated Android device.
� Compromised Gmail account implies compromised

associated Android device.
� There is no need for any further user cooperation!
� This all in fact effectively breaks those popular SMS-based

two-factor authentication schemes…

Smart Cards & Devices Forum 2012

How About iOS

� We have seen one particular way of possible cross-
infection on one particular platform.
� There will hardly be only one such example.

� Consider, for instance, an infected computer that is
synced via USB with an iOS device.
� Furthermore, consider those exploits behind jailbreaking

applications [28] and their forensic payloads [24].
� Yet, we are only talking about those public ones…

� Apparently, it is hard to believe that such iOS device can
always withstand refined attempts for malware spreading.

Smart Cards & Devices Forum 2012

Conclusion

� Was not this all happening to PCs in 90’s?
� Did not we lose the game?
� PCs are considered insecure environment, now.

� However, this is an unavoidable evolution.
� There is a yearning for mobile applications that

we can hardly resist.
� If we only could wait some time…
� But we cannot.
� The war has already begun.

Smart Cards & Devices Forum 2012

Thank You For Attention

Tomáš Rosa, Ph.D.
http://crypto.hyperlink.cz

Smart Cards & Devices Forum 2012

References I

1. Bachman, J.: iOS Applications Reverse Engineering, Swiss Cyber Storm, 2011
2. Bédrune, J.-B. and Sigwald, J.: iPhone Data Protection in Depth, HITB Amsterdam,

2011
3. Blazakis, D.: The Apple Sandbox, Black Hat DC, 2011
4. Breeuwsma, M.-F., de Jongh, M., Klaver, C., van der Knijff, R., and Roeloffs, M.:

Forensic Data Recovery from Flash Memory, Small Scale Digital Device Forensics
Journal, Vol. 1, No. 1, June 2007

5. Breeuwsma, M.-F.: Forensic Imaging of Embedded Systems Using JTAG (boundary-
scan), Digital Investigation 3, pp. 32 - 42, 2006

6. Chin, E., Felt, A.-P., Greenwood, K., and Wagner, D.: Analyzing Inter-Application
Communication in Android, MobiSys’11, 2011

7. Dhanjani, N.: New Age Application Attacks Against Apple's iOS (and
Countermeasures), Black Hat Barcelona, 2011

8. Dubuisson, O.: ASN.1 - Communication Between Heterogeneous Systems, Morgan
Kaufmann Academic Press, 2001

9. Enck, W., Octeau, D., McDaniel, P., and Chaudhuri, S.: A Study of Android Application
Security, Proc. of the 20th USENIX Security Symposium, 2011

10. Fairbanks, K.-D., Lee, C.-P., and Owen III, H.-L.: Forensics Implications of Ext4, Proc.
of the Sixth Annual Workshop on Cyber Security and Information Intelligence
Research, ACM, 2010

Smart Cards & Devices Forum 2012

References II

11. Felt, A.-P., Finifter, M., Chin, E., Hanna, S., and Wagner, D.: A Survey of Mobile
Malware in the Wild, SPSM'11, 2011

12. Halbronn, C. and Sigwald, J.: iPhone Security Model & Vulnerabilities, HITB KL, 2010
13. Hay, R. and Amit, Y.: Android Browser Cross-Application Scripting, CVE-2011-2357,

IBM Rational Application Security Research Group, 2011
14. Heider, J. and Boll, M.: Lost iPhone? Lost Passwords!, Fraunhofer SIT Report, cf. also

[23], 2011
15. Hoog, A.: Android Forensics – Investigation, Analysis and Mobile Security for Google

Android, Elsevier, 2011
16. HOTP: An HMAC-Based One-Time Password Algorithm, RFC 4226, 2005
17. Jaden and Pod2G: How To: Install GNU Debugger (GDB) On The iOS 5 Firmware

Generation, iJailbreak, February 24, 2012, http://www.ijailbreak.com/cydia/how-to-
install-gnu-debugger-gdb-on-ios-5/

18. Menezes, A.-J., van Oorschot, P.-C., and Vanstone, S.-A.: Handbook of Applied
Cryptography, CRC Press, 1996

19. Miller, C. and Iozzo, V.: Fun and Games with Mac OS X and iPhone Payloads, Black
Hat Europe, 2009

20. Miller, C. and Zovi, D.-A.-D.: The Mac Hacker's Handbook, Wiley Publishing, Inc., 2009

Smart Cards & Devices Forum 2012

References III

21. Oudot, L.: Planting and Extracting Sensitive Data Form Your iPhone's Subconscious,
HITB Amsterdam, 2011

22. PKCS #1 v2.1: RSA Cryptography Standard, RSA Laboratories, June 14, 2002
23. Toomey, P.: "Researchers Steal iPhone Passwords In 6 Minutes" - True, But Not the

Whole Story, Security Blog, http://labs.neohapsis.com/2011/02/28/researchers-steal-
iphone-passwords-in-6-minutes-true-but-not-the-whole-story/ , 2011

24. Zdziarski, J.: Hacking and Securing iOS Applications, O'Reilly Media, 2012
25. Zovi, D.-A.-D.: Apple iOS 4 Security Evaluation, Black Hat USA, 2011

Smart Cards & Devices Forum 2012

References IV

26. http://developer.android.com
27. http://developer.apple.com
28. http://theiphonewiki.com
29. http://thomascannon.net/blog/2011/02/android-lock-screen-bypass/
30. http://www.bbc.co.uk/news/technology-15635408
31. http://www.cycript.org
32. http://www.iphonedevwiki.net

33. iOS App Programming Guide, Apple Developer Guide, Apple Inc., 2011

