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This memo describes certain details of the Android mechanism of passing binder through another binder. The aim of 
this paper is to describe certain technical details of this mechanism as well as to point out some obvious security 
weaknesses. For the sake of simplicity, we do not include description of the whole Android binder framework here. 
The interested reader may check the OpenBinder documentation by Dianne K. Hackborn that is still available in [1]. 
Despite it not being compatible with the Android binder framework, a lot of OpenBinder general ideas seem to still 
apply. 

Before describing our observations, one clarification is apposite: OpenBinder is obviously more general concept. 
Therefore, when Android documentation talks about calling a remote binder and passing on a binder reference, 
OpenBinder documentation talks about invoking a remote object method and passing on an object reference, 
respectively. Obviously, the OpenBinder terminology describes more clearly what is going on when we call/pass a 
“binder”. Anyway, if Android people ever talk about a binder they are often referring to android.os.IBinder 
Java interface or, in particular, to the code that is serving the remote side of the binder pipe (i.e. not to the kernel driver 
of the same name [2], [3]). In Android, there is also a term for the code stub that pretends to be a fully capable local 
object, but it actually only hands incoming requests over to the remote side – it is called a proxy binder (in OpenBinder, 
this is a proxy object). Keeping these distinctions on mind actually makes the available documentation a bit more 
readable. In the following, we will stay with the Android-related terminology. So, in the following, a binder does not 
refer to the kernel driver itself ([2], [3]), it refers to a code that we can invoke remotely through this driver. 

Furthermore, if not stated otherwise, for the sake of simplicity and regarding the way threads are implemented in the 
contemporary Linux kernels [12], we use the words process and thread interchangeably in the following text. Note, 
however, that the binder framework implementation referred here not only supports threads – it actually directly 
assumes that the whole transaction processing is generally assisted by several working threads of each particular 
process. 

For calling a remote binder method, there is an important rule saying that a process (that has opened the 
/dev/binder driver) can invoke only such remote binders that it was explicitly invited to call. In the structure 
binder_proc defined in [2], the kernel driver keeps sorted trees of allowed remote binders per each attached process 
(cf. refs_by_desc and refs_by_node fields of binder_proc). In particular, there is an independent 
binder_proc structure kept per each open file descriptor of /dev/binder. It is referred to by a pointer stored in 
private_data of the respective file structure object [12]. We can see the creation of binder_proc in 
binder_open() [2]. Note that the driver is written using the Miscellaneous Character Drivers (misc) framework [4]. 

The set of allowed binders for each process (i.e. certain transitive relation of "process P is invited by process Q to call 
binder B") is almost automatically updated by the kernel driver basing on the binder references exchanged within 
transactions flowing through the others, already established binder pipes. Simply saying (cf. bellow for more details), 
the kernel driver actively sniffs the data being sent in any binder communication. When it finds a binder reference, it 
verifies the binder already belongs to the set of allowed binders for the target process. If no, the kernel driver introduces 
its reference into refs_by_desc and refs_by_node r-b trees in the target binder_proc. This way, the 



receiving process gets invited to call that binder later on. To be able to send such invitation, the inviter itself must have 
been invited to call that binder before. 

There is one special binder reference that is inherently allowed by default - this is the handle 0 (typed as NULL pointer) 
that refers to the ServiceManager. This is a Linux daemon implemented in service_manager.c [9]. In Java world, 
it is encapsulated by android.os.IServiceManager Java proxy binder interface. An interesting communication 
graph showing ServiceManager at work is presented in [7] (cf. part “14. Binder”). It is worth noting that the 
ServiceManager not only plays the role of global binder locator. It also plays an important role in “seeding” the whole 
invitation relation. 

When the particular service (e.g. ActivityManager) registers its binder object at ServiceManager, it in fact passes its 
binder reference to ServiceManager. The kernel driver recognizes this and introduces that reference into the set of 
allowed binders for ServiceManager (in refs_by_desc and refs_by_node trees in its binder_proc 
structure). That means the ServiceManager is now invited (allowed) to call ActivityManager. Later on, when another 
process P asks a binder reference for ActivityManager and the ServiceManager replies with this reference, then again 
the kernel driver sees this and it introduces that particular binder reference into the respective trees in binder_proc 
of process P. In this way, process P gets also invited to talk to ActivityManager. Furthermore, it has the same effect as 
if P has been invited to call this binder directly by the ActivityManager itself. Formally speaking, we see how the 
transitivity property of the relation is invited to call is employed to start up to whole IPC communication. Therefore, 
ServiceManager is not only the global locator, it is also the global inviter. 

It is interesting to look at how the mechanism of "reference sniffing" or "invitation capturing" works. The answer is in 
the structure binder_transaction_data defined in binder.h (of the kernel driver, cf. [3]). This structure 
describes the particular transaction command/reply data being exchanged with a binder object. Beside 
data.ptr.buffer pointing to the data payload, we can see data.ptr.offsets pointer. This is an array of data 
offsets that should index all binder references being passed on in the data payload. It is the user space code that 
prepares the data payload (parcel) which is responsible for providing these indices to the kernel driver. The particular 
“parceled” data structure for the binder reference is flat_binder_object defined in [3]. When processing the 
data payload, the kernel driver looks at those particular offsets and manipulates the references being passed on together 
with eventually introducing them into the respective trees in the target binder_proc structure, hence inviting the 
target process to call these binders later on. The same mechanism works for both command and reply data transfers. 

Of course, there is much more to say about this topic. For instance, when it comes to reference counting (to keep the 
referenced binders alive), the situation starts to be a bit fuzzy. It definitely requires to reverse-engineer the whole kernel 
driver together with its helping stuff in the user space to fully understand this. 

The binder reference representation in flat_binder_object [3] also deserves a few words. In short - local binders 
(i.e. those ones being hosted in the current process) are represented directly by pointers to the user space objects, while 
remote binders (i.e. those ones being hosted by a “remote” process) are referred by handles. In the kernel driver, there 
is a system-wide unique representation of each single binder by binder_node structure instance [3]. In the kernel 
space, local binders of a process are referenced directly by binder_node pointers sorted in nodes r-b tree in the 
particular binder_proc, while remote binders are primarily referenced indirectly via descriptors (it is just driver’s 
word for the handle appearing in flat_binder_object) sorted into refs_by_desc and refs_by_node 
trees in binder_proc. 

Because of the unique binder object representation in the kernel (as binder_node), the whole mechanism of binder 
passing has one interesting feature: A process can create a binder and send it (its reference) somewhere to the Android 
ecosystem world. Later on, when this process possibly receives the same binder back, it will get the same user space 
pointer. Therefore, the process can recognize it is its own binder it has sent to the Android world before. The same 
works for binders referenced by handle – a process can e.g. recognize it has just received the binder it had already 
received before. All this can be done by examining solely the binder reference data, the integrity of which should be 
(cf. bellow) preserved by the kernel driver. 

This was a relatively short description of the binder-through-binder passing mechanism. This observation, however, 
does not explain whether it is possible to pass on a binder reference from process Q to process P in such a way, that 
once being invoked from P, it will still seem like Q is calling the binder (instead of P). By examining binder.c [2], 
it is easy to see the mechanism described above still preserves PID/eUID-based caller authentication. On the other 
hand, the kernel driver is also capable of passing on open file descriptors. It would be interesting to verify what would 
happen if Q would pass on P directly its file descriptor of /dev/binder. Actually, this might work, since the kernel 



driver uses PID and eUID noted in binder_proc (cf. its pid and tsk->cred->euid fields) which seems to be 
passed together with the file descriptor. Well, this is an open question. All we can say now is that the kernel driver uses 
the same mechanism and data structure for locating file descriptors among the parceled data being transferred as for the 
binder references described above. The interested reader may try to search for BINDER_TYPE_FD in [2]. In particular, 
this is the value of type field in flat_binder_object in case of a file descriptor is to be sent. 

Actually, the open file descriptor passing mechanism can be easily observed right in the dumpsys utility [5]. It is 
employed here to pass on the STDOUT_FILENO of the dumpsys Linux process within the DUMP_TRANSACTION 
data payload (this is the transaction D3 in the binder communication graph [7]). It is interesting to check [6] to see how 
the binder transaction gets formed and invoked via the proxy binder method BpBinder::dump(). The remote side 
binder uses this file descriptor to write its output data on behalf of the dumpsys process right into its terminal output. 
To see how far this file descriptor really propagates, we may look at the method public void dump 
(FileDescriptor fd, String[] args) of android.os.Binder [8]. Well, that is quite nice mechanism. 

As was already noted in [10], the Android operating (eco)system is based on intensive object-oriented client-server 
communication. It is the binder framework that is in the center of this communication most of the time. From the 
security viewpoint, it is reasonable to ask on how far is the binder framework resistant against attacks being typically 
prevalent in this area. One such typical attack is a session hijacking – an attacker steals a communication pipe that was 
opened by some application component and continues in commanding the remote side (e.g. a service). From papers like 
[10], one can deduce that explicit cryptography-based techniques are seldom employed by user applications to preserve 
authentication and integrity of the binder communication. Actually, the state of the art seems to be represented by the 
Android operating system that uses the authentication based on caller’s PID/eUID for (at least some of) its own system 
services. The userland applications seem to simply rely on “security by obscurity” approach by hoping that it is 
somehow hard to hijack the binder communication. 

From the session hijacking viewpoint, the paradigm of explicit invitation described above seems to defeat the most 
straightforward attacks based on stealing or simply guessing a binder reference. Until the particular binder reference is 
inserted into the respective trees in binder_proc of the process, it is useless in direct communication (of that 
process). Furthermore, it should get introduced there only by the mechanism of explicit reference passing - i.e. the 
invitation to call. So, the whole concept looks good. 

We should be, however, a bit worried about the mechanism of reference sniffing described above. The potential 
weakness is that it relies on a hint from the user space that helps the kernel driver to locate binder references in the data 
payload (cf. data.ptr.offsets in binder_transaction_data). If a dishonest sending process will not 
explicitly index the particular binder reference being passed on, it will probably bypass the sniffing mechanism of the 
kernel driver. Therefore, the reference data will be handed unmodified over to the receiver. The receiver will, however, 
still regard it as a binder reference because of its AIDL (or equivalent) template. In this way, the dishonest sender may 
transfer a raw binder reference data that will be evaluated later on with respect to the r-b trees in binder_proc of the 
target process (or to say – in the context of the remote binder). It actually allows an attacker to further indirectly 
reference those binders that the target process was already invited to call before. By fooling the target process this way, 
the attacker can manage the target to further pass on or call its “protected” binder (that the attacker is not invited to call 
directly). We call this a cross-binder reference forgery (XBRF). 

On a first sight, it may seem the cross-binder reference forgery is a minor or even artificial problem. It may, however, 
lead to practical attacks on many naive userland application. In the worst case, there can be some attacks right on the 
Android application framework mechanisms – i.e. on the object-oriented kernel that makes the Android an operating 
system in itself (sitting on the top of an Embedded Linux kernel). It, however, requires further deep investigation. 
There is, for instance, a strange-looking field cookie in flat_binder_object that could theoretically prevent 
these attacks (or at least some of them). Unfortunately, this mechanism seems not to work (as a security measure) for 
binder references being passed on as handles, since the correct value gets filled in automatically by the kernel driver or 
is not important at all (cf. binder_transaction() in [2] and search for BINDER_TYPE_HANDLE). In other 
words, cookies seem to be important only when referring to local binders (i.e. those ones being hosted in the current 
process) by using user space pointers to their serving objects (cf. discussion of flat_binder_object above). 
Finally, this is a condition the attacker can avoid in the cross-binder reference forgery. 
 
Besides making the application components themselves use reliable cryptographic authentication techniques, there is a 
promising approach aimed at improving the kernel driver itself [11]. An important assumption for a successful XBRF 
attack is that the attacker has at least certain idea on which binder references are already valid in the context of the 
target process. Therefore, employing reference handle randomization seems to be a natural way on how to harden the 



attacker’s task considerably. It must be, however, checked carefully on how much entropy we can really introduce into 
these handles and whether there are some other ways on how the attacker could learn valid references in the target 
process regardless their random nature. Apparently, there are still a lot of interesting open questions. 

Update (November 16th 2011) 
To support the ServiceManager daemon [9], there is a small local module binder.c (cf. [13], [14]). Attention should 
be paid not to confuse this module with the main kernel driver of the same name (cf. [2], [3]). The binder.c [13] is 
in fact a simple toolbox that is used by ServiceManager to handle its binder communication. We note it is worth it 
studying this module in itself, since several aspects of the binder framework communication can be learned here in 
considerably easier way than by studying the deep forest of Java world objects. 

Important function regarding the potential XBRF is bio_get_ref() of [13] that is used by ServiceManager to parse 
a binder reference to be registered at the manager. This function further calls the static C function _bio_get_obj() 
of [13] which is actually the core of binder reference parsing here. To better describe its relation to XBRF, we copy and 
paste this particular function here. 

static struct binder_object *_bio_get_obj(struct binder_io *bio) 
{ 
    unsigned n; 
    unsigned off = bio->data - bio->data0; 
 
        /* TODO: be smarter about this? */ 
    for (n = 0; n < bio->offs_avail; n++) { 
        if (bio->offs[n] == off) 
            return bio_get(bio, sizeof(struct binder_object)); 
    } 
 
    bio->data_avail = 0; 
    bio->flags |= BIO_F_OVERFLOW; 
    return 0; 
} 

Apparently, the programmer who wrote that piece of code was probably aware of the XBRF threat. It is easy to see that 
to successfully parse the flat binder object this function requires its data pointer to be already noted in the array of 
binder reference offsets. This way, the XBRF scenario is mitigated for any code that is using this function to parse flat 
(parceled) binder objects in its transactions. 

Well, this is another kind of countermeasure that can defeat XBRF attack strategy effectively. It is, however, again 
based on a user space code. This time, of course, it is not a code that the attacker should have under its control, since it 
is the recipient’s code (i.e. the remote binder) that performs the check. On the other hand, there is still a residual risk 
that programmers will simply omit to do such a check in their codes. Furthermore, the conceptual drawback of the 
kernel driver relying solely on a user space hint is still not solved by a countermeasure of this kind. Therefore, in some 
situations, a careful manipulation with the transaction data prepared by an attacking process may still lead to a 
successful XBRF exploit. 

Anyway, it is an interesting observation to see that somebody was probably already aware of XBRF risk before. It 
would be also interesting to further explore whether such a countermeasure is really employed in the whole Android 
operating system. 
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